
Monte Carlo Book: the Quasi-Monte Carlo parts

Art B. Owen
Stanford University

July 2019

ii

© Art Owen 2019 do not distribute or post electronically without author’s
permission

Contents

15 Quasi-Monte Carlo 3
15.1 Introduction to QMC . 4
15.2 Discrepancy measures . 5
15.3 Discrepancy rates . 10
15.4 The Koksma-Hlawka Inequality 12
15.5 van der Corput and Halton sequences 16
15.6 Example: the wing weight function 23
15.7 Digital nets and sequences . 25
15.8 Effect of projections . 33
15.9 Example: synthetic integrands 34
15.10 How digital constructions work 41
15.11 Infinite variation . 43
15.12 Higher order nets . 44
15.13 Haar wavelets and Walsh functions 45
15.14 Kronecker sequences . 49
End notes . 51
Exercises . 56

16 Lattice rules 61
16.1 Rank one lattices . 61
16.2 Example: wing weight revisited 64
16.3 Lattices and lattice rules . 65
16.4 Quality criteria for lattices . 67
16.5 Convergence rates . 74
16.6 Periodizing transformations . 75
16.7 Lattice parameter search . 82
16.8 Embedded, extensible and shifted lattices 83
16.9 Weighted spaces . 85

1

2 Contents

End notes . 86
Exercises . 88

17 Randomized quasi-Monte Carlo 89
17.1 RQMC definitions and basic properties 90
17.2 Effective dimension for RQMC 92
17.3 Cranley-Patterson rotation and lattices 94
17.4 Example: wing weight function 97
17.5 Scrambled nets . 100
17.6 More scrambles . 106
17.7 Reducing effective dimension . 111
17.8 Example: valuing an Asian option 114
17.9 Padding, hybrids and supercube sampling 115
17.10 Randomized Halton sequences 121
17.11 RQMC and variance reduction 122
17.12 Singular integrands . 124
17.13 (R)QMC for MCMC . 128
17.14 Array-RQMC . 130
End notes . 132
Exercises . 136

Bibliography 139

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15

Quasi-Monte Carlo

Monte Carlo computation usually begins with points sampled from a uniform
distribution on the unit cube transformed as needed to other spaces and different
distributions on those spaces. Those uniform points xi tend to form clumps in
some parts of [0, 1]d and leave voids in others. Whether any given region of
the unit cube gets a clump or a void is of course random. The idea in quasi-
Monte Carlo (QMC) sampling is to choose points that, to the extent possible,
are spread out uniformly through [0, 1]d with minimal clumps and voids. We
still estimate µ =

∫
[0,1]d

f(x) dx by

µ̂ =
1

n

n∑
i=1

f(xi), (15.1)

but now x1, . . . ,xn are deterministic points designed to fill [0, 1]d as evenly as
mathematically possible, while f incorporates our transformations as well as our
original integrand. Roughly speaking, QMC is stratification taken to extremes.
For QMC it is easy to use transformations like inversion and not so simple to
use acceptance-rejection because the necessary d is not fixed.

The best use case for QMC arises when the integrand f has a high enough
dimension d that classic quadratures are infeasible, yet f is itself well approx-
imated by a sum of functions of one or two or a handful of its inputs. When
QMC works well on high dimensional functions, it can be a surprise. A fa-
mous surprise found empirically by Paskov and Traub (1995) was integrands
from finance with d in the hundreds could be well integrated by QMC. QMC is
also used in computer graphics (Keller, 1997) and in solving partial differential
equations over random environments (Graham et al., 2015).

In this chapter we look at how to measure the uniformity of a set of points.
Such measures, of which there are many, are called discrepancies. Then we

3

4 15. Quasi-Monte Carlo

compare QMC to MC, by considering the counterparts in QMC to the LLN
and CLT from MC. A key result, the Koksma-Hlawka theorem, shows how
bounds on discrepancy can be turned into bounds on quadrature error. It is
possible to achieve discrepancies that are O(n−1+ε) for any ε > 0, and we will
see conditions under which |µ̂− µ| = O(n−1+ε) too. This, roughly speaking, is
as good as Monte Carlo would be with on the order of n2 function evaluations.

15.1 Introduction to QMC

To begin, it is important to point out one commonly overlooked difference be-
tween MC and QMC. With QMC, there are usually significant benefits to using
certain special values of n, such as powers of 2, large primes, and more generally,
powers of primes. Powers of ten are almost never especially good choices. Using
n = 100,000 could be much worse than using 217 = 131,072 and could even be
worse than using 216 = 65,536. This distinction does not show up in the asymp-
totic error rates for QMC. Those are usually given as some power of n often
with a power of log(n) and they hide the importance of special sample sizes.
Some QMC methods have errors that are o(1/n) for special n. Then adding an
n+ 1’st point changes µ̂ by O(1/n) which is of larger magnitude than the prior
error, thus destroying the convergence rate. Even when the error rate is just
slightly worse than O(1/n), using arbitrary sample sizes is often detrimental.
With QMC as with antibiotics, it is best to use the complete sequence.

There are two main forms of QMC rule, lattices and digital nets. Small
examples of each are shown in Figure 15.1. After introducing QMC concepts,
this chapter looks at digital constructions. Then Chapter 16 presents lattice
rules. QMC methods are deterministic and it is hard to estimate their errors.
Randomized QMC (RQMC), presented in Chapter 17, provides a solution. Some
other advantages of RQMC over QMC are mentioned within this chapter.

Quasi-Monte Carlo algorithms may seem complicated at first. But they are
essentially the same algorithms that are used in pseudo-random number gener-
ators. The digital constructions are similar to feedback shift register random
number generators while lattice rules are similar to congruential generators. One
useful way to think of QMC is that we are taking a small random number gen-
erator and using it in its entirety (Niederreiter, 1986). Because the algorithms
have so much in common, QMC points are not materially slower to generate
than pseudo-random numbers.

When describing QMC, the unit cube is variously presented as (0, 1)d, [0, 1)d

or [0, 1]d. Because
∫

(0,1)d
f(x) dx =

∫
[0,1)d

f(x) dx =
∫

[0,1]d
f(x) dx, the choice

would seem to make no difference. Sometimes it doesn’t matter and we can
make an arbitrary choice. At other times, there are useful distinctions. When f
might be infinite on the boundary of the unit cube, then choosing (0, 1)d lets us
avoid having any f(x) = ±∞. When f , defined on Rd, is periodic with period
1 in every variable, then we can define f on [0, 1)d and know that we have not
introduced any contradictions. A further advantage of [0, 1)d is that it can be
split into similar pieces into which we will place the same number of sample

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.2. Discrepancy measures 5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

Monte Carlo

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Fibonacci lattice

MC and two QMC methods in the unit square

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Hammersley sequence

Figure 15.1: The left panel shows 32 points sampled independently from the
U[0, 1]2 distribution. The center panel shows the 34 points of a Fibonacci lattice
from Chapter 16. The right panel shows the 32 point Hammersley sequence in
base 2 from §15.5. Reference lines show the boundary of the unit square.

points. For instance, when d = 1 we have

[0, 1) =
[
0,

1

3

)
∪
[1

3
,

2

3

)
∪
[2

3
, 1
)

and we might put n/3 points into each of those subsets on the right. The
intervals [0, 1] and (0, 1) are more awkward to partition. Finally, we will see
that the total variation of a function plays an important role in QMC, and total
variation is defined for functions on the closed unit cube [0, 1]d. In short, being
consistent about the unit cube to use would be a bigger nuisance than being
inconsistent.

15.2 Discrepancy measures

The first task in QMC is to define what it means for points to be more uniform
than uniform random points. We do this by making a numerical measure of the
non-uniformity of our points.

Our goal is to estimate µ =
∫
f(x) dx for x ∈ [0, 1]d, that is E(f(x)) for

x ∼ U[0, 1]d. Our estimate is µ̂ = (1/n)
∑n
i=1 f(xi) for points xi ∈ [0, 1]d,

which (assuming the xi are distinct) is E(f(x)) for x ∼ U{x1, . . . ,xn}. The
intuition behind QMC is that if the discrete uniform distribution U{x1, . . . ,xn}
is somehow close to the continuous distribution U[0, 1]d, then at least for rea-
sonable f , µ̂ should be close to µ.

If any two of the xi are equal, then a technicality arises. The set {x1, . . . ,xn}
has fewer than n points and then µ̂ is no longer the mean of f(x) for x ∼
U{x1, . . . ,xn}. We would instead need a mean that weights each QMC point

© Art Owen 2019 do not distribute or post electronically without author’s
permission

6 15. Quasi-Monte Carlo

by its multiplicity. The QMC estimate is still an expectation, namely E(f(xI))
for a random index I ∼ U{1, 2, . . . , n}. We will assume that the xi are distinct
and work with µ̂ = E(f(x)) for x ∼ U{x1, . . . ,xn}. This case is simpler and
covers the great majority of applications.

There are many ways to define a distance between distributions on [0, 1]d.
One that has served well in the theory of quasi-Monte Carlo is the star dis-
crepancy, developed next. First we generalize the notion of an interval to d
dimensions.

For a, b ∈ Rd, with aj 6 bj , the half-open interval [a, b) is the set

d∏
j=1

[aj , bj) =
{
x ∈ Rd | aj 6 xj < bj , j = 1, . . . , d

}
.

Half-open intervals are convenient here for their partitioning property mentioned
at the beginning of this chapter. We take special interest in intervals of the form
[0,a). Such an interval is often called an anchored box where the more general
interval is an un-anchored box.

The local discrepancy of x1, . . . ,xn at a ∈ [0, 1]d is

δ(a) = δ(a;x1, . . . ,xn) =
1

n

n∑
i=1

1xi∈[0,a) −
d∏
j=1

aj .

The ratio (1/n)
∑n
i=1 1xi∈[0,a) is the fraction of our n points inside [0,a). Ide-

ally, that fraction would match vol([0,a)) =
∏d
j=1 aj . Then δ(a) is positive for

anchored boxes containing an excess of points xi, compared to their volume,
and is negative for anchored boxes with a deficit of points. If δ(a) = 0, then the
points have sampled [0,a) in a perfectly balanced way. We may interpret δ(a) as

v̂ol([0,a))−vol([0,a)), with v̂ol(A) = (1/n)
∑n
i=1 1xi∈A, an estimated volume

of A using points x1, . . . ,xn. Put another way, δ(a) is the difference between
P(x ∈ [0,a)) under x ∼ U{x1, . . . ,xn} versus x ∼ U([0, 1]d). Figure 15.2
illustrates the local discrepancy function.

The star discrepancy of x1, . . . ,xn ∈ [0, 1]d is

D∗n = D∗n(x1, . . . ,xn) = sup
a∈[0,1)d

|δ(a;x1, . . . ,xn)|. (15.2)

When D∗n is small, then the fraction of n points in each anchored box is very
close to the proportion of the unit cube taken up by that box. For d = 1, the
star discrepancy reduces to the well-known Kolmogorov-Smirnov test statistic
for whether x1, . . . , xn have been sampled from U[0, 1].

The origin plays a special role in the star discrepancy, because all the an-
chored boxes include it. There may be nothing about f to make the origin any
more important than the other 2d − 1 corners of [0, 1]d. The next discrepancy
measure does not treat the origin specially.

The extreme discrepancy of x1, . . . ,xn ∈ [0, 1]d is

Dn = Dn(x1, . . . ,xn) = sup
a,b

∣∣∣∣ 1n
n∑
i=1

1xi∈[a,b) −
d∏
j=1

(bj − aj)
∣∣∣∣ (15.3)

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.2. Discrepancy measures 7

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

a

0

●

0.6

0.70

b

0

●

0.42

0.45

Local discrepancy at a, b

Figure 15.2: The plot illustrates the local discrepancy δ(·) at points a =
(0.6, 0.7) and b = (0.42, 0.45) for 32 points xi in [0, 1]2. Here |δ(a)| =
|13/32− 0.6× 0.7| = 0.01375 and |δ(b)| = |2/32− 0.42× 0.45| = 0.1265.

where the supremum is taken over a, b ∈ [0, 1]d with 0 6 aj 6 bj 6 1 for
j = 1, . . . , d.

Sometimes the extreme discrepancy is simply called the discrepancy. It is
in this sense the default discrepancy, although the star discrepancy is more
frequently used. One reason for the popularity of the star discrepancy is that
it has a simple and direct connection to integration error. The connection is
easiest to see when d = 1 and f(x) is a continuously differentiable function on
[0, 1].

Theorem 15.1. Let f have a continuous first derivative on [0, 1]. Let x1, . . . , xn ∈
[0, 1]. Then

1

n

n∑
i=1

f(xi)−
∫ 1

0

f(x) dx = −
∫ 1

0

δ(x)f ′(x) dx, (15.4)

where δ is the local discrepancy function for x1, . . . , xn.

Proof. Integrating by parts,∫ 1

0

f(x) dx = xf(x)
∣∣∣1
0
−
∫ 1

0

xf ′(x) dx = f(1)−
∫ 1

0

xf ′(x) dx.

An analogous summation by parts gives us

n∑
i=1

f(xi) = nf(1)−
n∑
i=0

i(f(xi+1)− f(xi))

© Art Owen 2019 do not distribute or post electronically without author’s
permission

8 15. Quasi-Monte Carlo

using x0 = 0 and xn+1 = 1. Now suppose without loss of generality that
x1 6 x2 6 · · · 6 xn. Then

1

n

n∑
i=1

f(xi)−
∫ 1

0

f(x) dx =

∫ 1

0

xf ′(x) dx−
n∑
i=0

i

n
(f(xi+1)− f(xi)).

We can write the sum as an integral

n∑
i=0

i

n
(f(xi+1)− f(xi)) =

n∑
i=0

i

n

∫
[xi,xi+1)

f ′(x) dx

=

∫ 1

0

n∑
i=0

i

n
1xi6x<xi+1

f ′(x) dx

=

∫ 1

0

1

n
#{1 6 i 6 n | xi < x}f ′(x) dx

=

∫ 1

0

1

n

n∑
i=1

1xi<xf
′(x) dx. (15.5)

Finally

1

n

n∑
i=1

f(xi)−
∫ 1

0

f(x) dx =

∫ 1

0

(
x− 1

n

n∑
i=1

1xi<x

)
f ′(x) dx

= −
∫ 1

0

δ(x)f ′(x) dx,

where δ is the local discrepancy function for x1, . . . , xn.

From (15.4) we see that when we are lucky enough to have f ′ orthogonal to
the local discrepancy function δ, then the integration error is zero. On the other
hand, if f ′ = cδ for c 6= 0, then we get no cancellation in (15.4) and a large
error is the result. Strictly speaking, f ′ cannot be cδ because we assumed that
f ′ is continuous and δ is discontinuous at each xi. But f ′ might be a continuous
function arbitrarily close to cδ, and so Theorem 15.1 does let us find integrands
that will be poorly handled by x1, . . . , xn.

Discrepancies have been defined as supS∈S |v̂ol(S) − vol(S)| for various
classes S of sets. Examples include the set of hyper-rectangles not necessar-
ily parallel to the sides of [0, 1)d, the set of simplices and the set of balls. Some
references to that literature are in the chapter end notes. One of the most com-
prehensive discrepancies is the isotropic discrepancy. Let C be the set of convex
subsets of [0, 1)d. The isotropic discrepancy of x1, . . . ,xn ∈ [0, 1]d is

Jn(x1, . . . ,xn) = sup
C∈C

∣∣∣∣ 1n
n∑
i=1

1xi∈C − vol(C)

∣∣∣∣. (15.6)

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.2. Discrepancy measures 9

Not all discrepancies are defined as suprema of |v̂ol(S)−vol(S)| over classes
of sets S. The L2-star discrepancy of x1, . . . ,xn ∈ [0, 1]d is

D∗n,2 = D∗n,2(x1, . . . ,xn) =

(∫
a∈[0,1]d

δ(a)2 da

)1/2

where δ(a) = δ(a;x1, . . . ,xn) is the local discrepancy of x1, . . . ,xn at a ∈
[0, 1]d. Warnock’s (1972) formula for the square of D∗n,2 is

(
D∗n,2

)2
=
(1

3

)d
− 2

n

n∑
i=1

d∏
j=1

((1− xij)2

2

)
+

1

n2

n∑
i=1

n∑
i′=1

d∏
j=1

(1−max(xij , xi′j)).

(15.7)

The cost of Warnock’s formula grows like n2d. It is useful for investigating small
QMC rules.

Thus while the star discrepancy is ‖δ‖∞ = supa∈[0,1]d |δ(a)|, the L2-star

discrepancy is ‖δ‖2. General Lp norms ‖δ‖p =
(∫
a∈[0,1]d

|δ(a)|p da
)1/p

have

also been used as discrepancies. For d = 1, the L2-star discrepancy reduces to
the Cramer-von Mises distance between U[0, 1] and U{x1, . . . ,xn}.

The practical use of discrepancies is in proving bounds on the integration
error. The most important one is the Koksma-Hlawka inequality in §15.4. In
these error bounds, the first thing we look at is the rate at which discrepancy
decreases as n→∞. The ordinary and star discrepancy attain the same rate:

Proposition 15.1. For x1, . . . ,xn ∈ [0, 1]d,

D∗n 6 Dn 6 2dD∗n.

Note: The key to proving the upper bound in Proposition 15.1 is to express the
unanchored box [a, b) in terms of 2d anchored boxes, each extending from the
origin to one of the vertices of [a, b). Figure 15.3 illustrates the decomposition
for d = 2.

Proof of Proposition 15.1. The left side is immediate.
For the right side, the indicator function of the un-anchored box [a, b) is

1[a,b)(x) =

d∏
j=1

(
1[0,bj)(xj)− 1[0,aj)(xj)

)
. (15.8)

We will write this function as a sum of 2d signed indicator functions of anchored
boxes.

For u ⊆ {1, . . . , d} let c(u) = au:b−u, a merger of components from a and b,

given by c
(u)
j = aj for j ∈ u and c

(u)
j = bj for j 6∈ u. Expanding (15.8) we get

1[a,b)(x) =
∑

u⊆{1,...,d}

(−1)|u|1[0,c(u))(x).

© Art Owen 2019 do not distribute or post electronically without author’s
permission

10 15. Quasi-Monte Carlo

a

bc

d

0

Decomposition of the unanchored box [a,b)

Figure 15.3: An unanchored box [a, b) ⊂ [0, 1]2 is shown. Its indicator function
can be written 1[a,b)(x) = 1[0,b)(x)− 1[0,c)(x)− 1[0,d)(x) + 1[0,a)(x) in terms
of indicators of anchored boxes at a, b, c and d.

Now ∣∣∣v̂ol([a, b))− vol([a, b))
∣∣∣

=
∣∣∣ 1
n

n∑
i=1

1[a,b)(xi)−
∫

[0,1]d
1[a,b)(x) dx

∣∣∣
=
∣∣∣ 1
n

n∑
i=1

∑
u

(−1)|u|1[0,c(u))(xi)−
∫

[0,1]d

∑
u

(−1)|u|1[0,c(u))(x) dx
∣∣∣

6
∑
u

∣∣∣ 1
n

n∑
i=1

1[0,c(u))(xi)−
∫

[0,1]d
1[0,c(u))(x) dx

∣∣∣
6 2dD∗n.

Since [a, b) is arbitrary, Dn 6 2dD∗n.

Discrepancies are mainly used to get rates of convergence. We will see below
that those rates show how QMC can be much better than MC. The factor 2d

can be quite large, but it does not change rates in n for fixed d. It seems unlikely
that xi would really have a ratio of D∗n/Dn anywhere close to 2d for QMC points
in use.

15.3 Discrepancy rates

The star discrepancy of random points xi ∼ U[0, 1]d is well studied. For any
point a ∈ [0, 1]d, we easily find that E(δ2(a;x1, . . . ,xn))1/2 =

√
p(1− p)/n

where p = vol([0,a]), and so the local discrepancy decreases like 1/
√
n at any

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.3. Discrepancy rates 11

a. The star discrepancy, which must account for finding the least favorable
anchored box [0,a] for the sampled values xi is of just slightly larger order. It
is eventually no larger than

√
log log n/

√
2n with probability 1 as Theorem 15.2

shows.

Theorem 15.2. Let x1, . . . ,xn ∼ U[0, 1]d be independent. Then

P
(

lim sup
n→∞

√
2nD∗n(x1, . . . ,xn)√

log logn
= 1

)
= 1.

Proof. Chung (1949) proved this for d = 1 and Kiefer (1961) proved it for
d > 1.

It is possible to attain much lower discrepancies than random points do.
We will see constructions of sequences that have low discrepancy, according
to the following criterion. The infinite sequence x1,x2, . . . ∈ [0, 1]d is a low
discrepancy sequence if

D∗n(x1, . . . ,xn) = O(n−1(log n)d)

as n → ∞. Any finite positive power of log(n) is asymptotically negligible
compared to any finite positive power of n. Thus a low discrepancy sequence
has

D∗n(x1, . . . ,xn) = O(n−1+ε)

for any ε > 0 as n → ∞. It is also o(n−1+ε) but O(n−1+ε) is more commonly
used.

Even modest powers of log(n) like log(n)10 can be quite large compared to
n when n is small enough to be a feasible sample size. We return to this point
later when discussing how discrepancy affects the accuracy of QMC integration.

In practice, we only use a finite value of n, not an entire infinite sequence.
For finite n, we can find constructions that are better than O(n−1(log n)d).
Here O(·) refers to asymptotics as n → ∞ so we need to reconcile n → ∞
with finite n. We consider an infinite sequence of finite sequences. The finite
sequences increase in length, and we take the limit as this length goes to infinity.
Specifically, let xin ∈ [0, 1]d for all i = 1, . . . , n and all n ∈ N where N =
{n1, n2, . . . } is an infinite set of positive integers with nj < nj+1. We call such
an arrangement a triangular array because it can be displayed as a table

x1n1 x2n1 · · · xn1n1

x1n2 x2n2 · · · xn1n2 · · · xn2n2

x1n3
x2n3

· · · xn1n3
· · · xn2n3

· · · xn3n3

...
...

...
...

...
...

...
...

. . .

of infinitely many rows of increasing length. The j’th row has nj elements. In
examples we may have nj = j which would give the table a truly triangular
shape, or perhaps nj = 2j , among other choices.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

12 15. Quasi-Monte Carlo

Some triangular arrays of points in [0, 1]d have

D∗nj
(x1nj

, . . . ,xnjnj
) = O(n−1

j (log(nj))
d−1)

as j →∞. Compared to a low discrepancy sequence, the triangular array saves
a factor of log(n), which is like reducing the dimension d by one.

A potential drawback to a triangular array construction is that the points
in the j + 1’st row need not include the ones in the j’th row. If we find that nj
points are not enough to get an accurate answer, then we may have to start all
over again computing f at nj+1 new values and discarding the previous ones. A
triangular array is extensible if xinj

= xinj+1
for all j > 1 and i = 1, . . . , nj .

An extensible array lets us reuse all the previous points. We can extend from one
good sample size nj to a larger good sample size nj+1 computing only nj+1−nj
new function values. Extensible rules just use the first nj points of an infinite
sequence of xi.

The best possible rate for discrepancies is not known. Roth (1954) gives a
celebrated lower bound D∗n,2 > cd(log(n))(d−1)/2/n for the L2-star discrepancy

which holds for any set of n points in [0, 1]d. The constant cd > 0 does not
depend on n. Roth’s result implies that D∗n > cd(log(n))(d−1)/2/n too. It is
widely believed that the rate D∗n = o(n−1(log n)d−1) cannot be attained by any
triangular array. This has been proved for d 6 2. Dick and Pillichshammer
(2010, Chapter 2) give more information on bounds for discrepancies.

15.4 The Koksma-Hlawka Inequality

When we replace randomly sampled points xi by deterministic ones, we can
no longer rely upon the law of large numbers to ensure convergence. We also
lose the central limit theorem. Here we look at replacement concepts for deter-
ministic quadrature rules. We’ll work with the star discrepancy. Qualitatively
similar results exist for many other discrepancies.

Definition 15.1. The infinite sequence x1,x2, · · · ∈ [0, 1]d is uniformly dis-
tributed if D∗n(x1, . . . ,xn)→ 0 as n→∞.

Theorem 15.3. Let f be a Riemann integrable function on [0, 1]d. If x1,x2, · · · ∈
[0, 1]d are uniformly distributed then∣∣∣ 1

n

n∑
i=1

f(xi)−
∫

[0,1]d
f(x) dx

∣∣∣→ 0 (15.9)

as n→∞.

Proof. Kuipers and Niederreiter (1974) give this as Exercise 6.1.

Using Theorem 15.1 we can easily verify Theorem 15.3 for d = 1 and f ′

continuous. We write∣∣∣ 1
n

n∑
i=1

f(xi)−
∫

[0,1]

f(x) dx
∣∣∣ 6 ∫ 1

0

|δ(x)f ′(x)|dx 6 D∗n

∫ 1

0

|f ′(x)|dx

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.4. The Koksma-Hlawka Inequality 13

and then D∗n → 0 by the definition of uniformly distributed xi.
Theorem 15.3 is the QMC counterpart to the law of large numbers. Our

estimate will converge to the right answer if we use a uniformly distributed
sequence of points. There is a new condition that we did not require for MC: the
function f must now be Riemann integrable. That rules out some functions we
might not have cared about. One such is the function which is 1 if all components
of x are rational and is 0 otherwise. Another is a classic pathological example,
the function f(x) which is 1 at each of the infinitely many sample points xi,
and is 0 everywhere else. But requiring Riemann integrability also rules out
unbounded functions, including many that are important to applications. For
example, we commonly apply the inverse Gaussian CDF Φ−1 to one or more
components of x and subsequent steps don’t always leave us with a bounded
quantity. Theorem 15.3 has a converse:

Theorem 15.4. If the limit (15.9) holds for all uniformly distributed sequences
xi ∈ [0, 1]d, then f is Riemann integrable.

Proof. The case d = 1 is due to de Bruijn and Post (1968) and Binder (1970)
proves it for d > 1.

Quasi-Monte Carlo often attains good empirical results on unbounded func-
tions. From Theorem 15.4 we know that conditions beyond uniform distribution
must be imposed on xi. There are more remarks and references about QMC for
unbounded integrands in the chapter end notes, and §17.12 considers random-
ized QMC for unbounded integrands.

In Monte Carlo sampling, the central limit theorem is used to study the
error. For QMC, there is the Koksma-Hlawka inequality. It requires a new
quantity, VHK(f), which is the total variation of f in the sense of Hardy and
Krause. For d = 1, VHK(f) is the familiar total variation of f . See the chapter
end notes for a discussion of total variation, including the d-dimensional case.

Theorem 15.5 (Koksma-Hlawka inequality). For d > 1 and x1, . . . ,xn ∈
[0, 1]d,

∣∣∣ 1
n

n∑
i=1

f(xi)−
∫

[0,1]d
f(x) dx

∣∣∣ 6 D∗n(x1, . . . ,xn)VHK(f), (15.10)

where VHK(f) denotes the total variation of f in the sense of Hardy and Krause.

Proof. This was proved by Koksma (1943) for d = 1 and Hlawka (1961) for
d > 1. Kuipers and Niederreiter (1974, Chapter 5) include a proof.

Theorem 15.5 gives control over the quadrature error |µ̂ − µ|. The upper
bound is the product of a measure of roughness of f times a measure of non-
uniformity of x1, . . . ,xn. While it is a counterpart of the CLT, there are some
important differences. First of all, the Koksma-Hlawka inequality is not proba-
bilistic. It holds with certainty, or 100% confidence in statistical language. We

© Art Owen 2019 do not distribute or post electronically without author’s
permission

14 15. Quasi-Monte Carlo

ordinarily prefer 100% confidence to 99%, except perhaps when the former in-
terval is far wider than the latter. Second, the Koksma-Hlawka inequality holds
for finite n, while the CLT only holds in the limit as n→∞.

Having a 100% confidence interval for the n specific points we use may sound
too good to be true. There is indeed a problem. While we are sure that the
interval µ̂ ± D∗nVHK(f) contains µ, outside of very special cases, neither D∗n
nor VHK(f) is known to us. Therefore we don’t get a usable 100% confidence
interval. The star discrepancy is very hard to compute for modestly large d
and no practical algorithms for it can handle n as large as we want to use in
QMC. While we could in principle compute D∗n once and then use it for many
integrands f , we still would not know the value of VHK(f). The total variation
is ordinarily harder to compute than µ. It involves 2d − 1 multidimensional
integrals of certain partial derivatives of f as described in the chapter end notes.

Theorem 15.5 is however an extremely important result. It shows that if we
use a low discrepancy sequence then we will achieve |µ̂−µ| = O(n−1+ε), for any
ε > 0. As a result, we know that if VHK(f) < ∞, then for large enough n we
should get much better accuracy from QMC than from MC. Also, the search for
good QMC methods may be organized around reducing D∗n, and other similar
figures of merit.

The Koksma-Hlawka inequality is tight. We cannot replace the right hand
side of (15.10) by γD∗nVHK for any γ < 1, because given x1, . . . ,xn ∈ [0, 1]d

there is always some function f for which

∣∣∣ 1
n

n∑
i=1

f(xi)−
∫

[0,1]d
f(x) dx

∣∣∣ > γD∗n(x1, . . . ,xn)VHK(f).

Being tight (in the sense above) does not prevent the inequality from also being
loose in a given application. Equality holds in (15.10) for a worst case function
that is allowed to take account of the locations of the sampling points. For some
other function f we might well have |µ̂− µ| � D∗nVHK(f).

The quantity log(n)d−1/n causes a lot of difficulty even for moderate di-
mensions, like d = 10. It can require quite enormous n before that quantity is
below n−1/2, and we have not yet considered the lead constant. Here we rule
out n = 1 which is clearly not relevant to an asymptotic bound. One never
actually sees an error behaving like log(n)9/n, at least in published papers, for
the usual QMC points and real 10-dimensional integrands. That rate applies
to the worst function of bounded variation on [0, 1]10 that could be chosen by
an adversary who knew the locations of the points x1, . . . ,xn to be used. That
makes the criterion quite pessimistic. Furthermore, it is not feasible for one and
the same function to be worst case for all of the different values of n used when
plotting absolute error versus n.

We know that for some n, QMC will be better than MC, but we cannot tell
a user which n that will be. An additional difficulty is that the coefficient of

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.4. The Koksma-Hlawka Inequality 15

log(n)d−1/n includes VHK(f). Morokoff and Caflisch (1995) compare

f1(x) =

d∏
j=1

xj and f2(x) =

d∏
j=1

(1− xj). (15.11)

These certainly appear to be about equally challenging to integrate numerically,
yet VHK(f1) = 2d − 1, while VHK(f2) = 1. The difference stems from the way
that VHK is defined (see the end notes). There is thus an exponential in d
difference in the lead constants for the error bounds of these two quite similar
integrands.

These problems with the theoretical accuracy of QMC have lead to some
empirical alternatives. Many authors fit a linear regression model log |µ̂− µ| .=
α0 − α1 log(n) to example data where µ is known, from which it will then
appear that the error is O(n−α1) with α1 commonly between 1/2 and 1. We
know theoretically that such rates are not the true asymptotic rates, while at
the same time, they can be much more realistic for a given range of n than the
asymptotic rates. It is then difficult to know for which other integrands and
sample sizes is the empirical rate O(n−α1) a good guide.

A less common empirical investigation looks at alternatives to using VHK(f)
to describe performance at finite n for different functions f . That is like seeking
an empirical α0 in the regression above. In a set of examples, Schlier (2004)
finds that VHK(f) has little to do with the QMC accuracy, confirming what
seemed clear in the discussion of f1 and f2 from (15.11). He then finds that
σ2 = Var(f(x)) provides a more reliable scaling. This measure is problematic
theoretically because we could choose f completely lacking any of the regularity
that QMC uses without that irregularity being reflected in Var(f(x)). We
therefore cannot know to which other integrands his findings might apply. His
test functions all had bounded variation and most were differentiable.

The empirical answers are not aligned with known theory. By the same
token, the theoretical guidelines fail empirically. Schlier (2004) reports inaccu-
racies of “tens of orders of magnitude” from using the Koksma-Hlawka bound.
Improved descriptions of QMC performance are available by considering coor-
dinate projections of the QMC points in §15.8. That connects to the notions of
effective dimension in §17.2 and weighted spaces in §7.7. Those concepts narrow
the gap between theoretical and empirical performance.

Some forms of randomized QMC provide control on those logarithmic pow-
ers. They ensure that the mean squared error in RQMC sampling cannot be
above a fixed known multiple of the mean squared error of MC at a given value
of n, even where log(n)d−1 is enormous. That bound holds even for worst
case square integrable functions specifically chosen to make RQMC have a large
variance relative to MC.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

16 15. Quasi-Monte Carlo

15.5 van der Corput and Halton sequences

Given a sample size n, a natural way to evenly distribute n points in [0, 1] is to
form n congruent intervals [(i− 1)/n, i/n] for i = 1, . . . , n, and take their center
points (i− 1/2)/n. Niederreiter (1992b) shows that for xi ∈ [0, 1],

D∗n(x1, . . . , xn) =
1

2n
+ max

16i6n

∣∣∣x(i) −
i− 1/2

n

∣∣∣
where x(i) is the i’th smallest of the xi. Thus the midpoint rule xi = (i−1/2)/n
minimizes D∗n attaining the value 1/(2n). A similar representation shows that
the midpoint rule also minimizes Dn.

One problem with the midpoint rule is that it is awkward to extend. The
midpoint rule with n+ 1 points does not contain the n point rule. Neither does
the one with 2n points. The midpoint rule with 3n sample points does extend
the one with n points. But if we start with n1 points and keep extending our rule
this way we get a sequence of quadrature rules of size nj = 3j−1n1 which grows
uncomfortably fast. Extending a QMC rule by one point is not very effective,
but seeing how it is done helps to understand how digital constructions work,
and of course we can extend it from one good sample size to another.

We would like to find an infinite sequence xi ∈ [0, 1] for i > 1 with a small
discrepancy Dn or D∗n for all n. The most reasonable one point rule is x1 = 1/2.
This splits [0, 1] into two equal intervals, left and right. The next point x2 might
as well be in the middle of one such interval. If we take x2 = 1/4 then it is
reasonable to put x3 = 3/4 to recover some balance. Now we have four intervals
of equal length so it is reasonable to split one of them in two. If we’ve split a
subinterval of [0, 1/2] with x4 then it seems fair to split a subinterval of [1/2, 1]
with x5.

The van der Corput sequence carries out just such a myopic equidistribution
algorithm. To define it, we introduce a digit retrieval function. For integers
i > 0, k > 0, and b > 2, let dk,b(i) ∈ {0, 1, . . . , b− 1} be the coefficient of bk in
the base b expansion of i. That is

i =

∞∑
k=0

dk,b(i)b
k, (15.12)

where only finitely many of the dk,b are nonzero. Equation (15.12) uniquely
determines dk,b(i) given i, k, and b. When b is understood, we use dk(i) as
shorthand for dk,b(i).

The radical inverse function φb in base b > 2 is defined as

φb(i) =

∞∑
k=0

dk,b(i)b
−k−1. (15.13)

The radical inverse function flips the base b expansion of i around the decimal
point (b-minal point), mapping the nonnegative integers into [0, 1).

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.5. van der Corput and Halton sequences 17

i φ2(i)

1 1 0.1 1/2 0.5
2 10 0.01 1/4 0.25
3 11 0.11 3/4 0.75
4 100 0.001 1/8 0.125
5 101 0.101 5/8 0.625
6 110 0.011 3/8 0.375
7 111 0.111 7/8 0.875
8 1000 0.0001 1/16 0.0625
9 1001 0.1001 9/16 0.5625

Table 15.1: The table illustrates computation of the base 2 radical inverse func-
tion φ2 used in the van der Corput sequence. From left to right: The integer
i is converted to base 2. Then its binary digits are reflected about the binary
point. The result is then re-expressed as a fraction and as a number in base 10.

The van der Corput sequence is defined by xi = φ2(i − 1) for i > 1.
See Table 15.1 for an illustration. It is customary to start the van der Corput
sequence with x1 = φ2(0) = 0, instead of taking the first point to be x1 =
1/2 as discussed above. However, having x1 = 0 often causes problems with
integrands that are unbounded. As a result we often take xi = φ2(i) instead, in
applications.

Reading down the second and third column of Table 15.1 we see how van
der Corput’s sequence remains balanced. The integers i alternate between odd
and even, ending in 1 or 0 base 2. When flipped at the binary point, they
therefore alternate between subintervals [1/2, 1) and [0, 1/2). If n is even, half
the points are on the left and half are on the right, while if n is odd, the disparity
between the half intervals is just one point. Similarly, the last k binary digits of
i cycle through 2k possible endings, and every consecutive 2k points are equally
stratified among 2k intervals [`2−k, (`+ 1)2−k) for 0 6 ` < 2k.

The same idea works in any integer base b > 2. The van der Corput
sequence in base b >>> 2 is defined by xi = φb(i− 1) for i > 1. As with base 2,
we often take xi = φb(i) to avoid having x1 = 0. The van der Corput sequences
are low discrepancy sequences:

Theorem 15.6. For i > 1 and b > 2 let xi = φb(i− 1) ∈ [0, 1]. Then

lim sup
n→∞

nD∗n(x1, . . . , xn)

log n
=


b− 1

4 log b
b odd

b2

4(b+ 1) log b
b even.

Proof. Faure (1982).

The same asymptotic star discrepancies apply if we start the sequence at
φb(1) instead of φb(0). Indeed, we could skip ahead any number of places,

© Art Owen 2019 do not distribute or post electronically without author’s
permission

18 15. Quasi-Monte Carlo

0 1000 2000 3000 4000

1.
0

2.
0

3.
0

4.
0

Star discrepancy at n vs previous power of 2

n

D
is

cr
ep

an
cy

 r
at

io

Figure 15.4: For 1 6 n 6 4096, we see the star discrepancy of the first n
points of the van der Corput sequence divided by that of the first 2m points for
m = m(n) = max{k | 2k 6 n}.

taking xi = φb(N + i − 1) for i > 1 and N > 0. The limit in Theorem 15.6 is
strictly increasing in b for b > 3. The value for b = 2 is just slightly worse than
the one for b = 3, and so b = 3 attains the best limit.

Samples sizes n = 2m are especially good for the van der Corput sequence.
Figure 15.4 shows

D∗n(φ2(1), . . . , φ2(n))/D∗m(n)(φ2(1), . . . , φ2(m(n)))

where m(n) = 2blog2(n)c is the greatest power of 2 that is less than or equal to n.
That ratio is never below 1 for 1 6 n 6 214. In that range, adding points after
a power of 2 cannot make an improvement until one reaches the next power
of 2. Perhaps that ratio is never below 1 for any n > 1. The figure includes
1 6 n 6 4096 = 212. Exercise 15.7 asks you to investigate b = 3.

The greatest need for QMC methods is not for d = 1, but for d large enough
that iterated one dimensional rules are ineffective. One of the simplest methods
for higher d is the Halton sequence. The Halton sequence uses radical inverse
generators in bases bj > 2 for j = 1, . . . , d. In order for these points to be
equidistributed it is necessary for bj to be relatively prime to each other. That
is, for j 6= k the bases bj and bk should not both be divisible by any positive
integer other than 1. The definition below uses the usual choice.

Definition 15.2. The Halton sequence x1,x2, · · · ∈ [0, 1)d has

xij = φpj (i− 1), i > 1, 1 6 j 6 d,

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.5. van der Corput and Halton sequences 19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

72 Halton points

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

864 Halton points

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

864 random points

Halton sequence in the unit square

Figure 15.5: The left panel shows the first 72 = 2332 points of the Halton
sequence xi = (φ2(i), φ3(i)) for i = 1, . . . , 72. The reference lines divide the
unit square into a grid of 8 columns and 9 rows. Each grid rectangle has one
Halton point. The middle panel shows the first 864 = 2533 Halton points. The
right panel shows 864 random points for comparison.

where p1 = 2, p2 = 3, and more generally, pj is the j’th prime number.

Figure 15.5 illustrates the Halton sequence for d = 2, skipping the point
at the origin. For d = 2, if we take n = 2a3b consecutive points from the
Halton sequence, for positive integers a and b, then from the radical inverse
construction, each interval [(`− 1)/2a, `/2a) for ` = 1, . . . , 2b has 3b of the xi1.
Similarly each interval [(`−1)/3b, `/3b) for ` = 1, . . . , 3b has 2a of the xi2. Even
better, if we intersect these strata in the natural way, we get n rectangles each
with exactly one of the n Halton points.

More generally, the projection of n =
∏d
j=1 p

aj
j consecutive Halton points

onto components j ∈ u ⊂ {1, . . . , d} places
∏
j 6∈u p

aj
j points into each of

∏
j∈u p

aj
j

congruent hyper-rectangular regions.
The reason for using the first d primes is that smaller bases give finer stratifi-

cation than larger ones. The smallest d relatively prime natural numbers (ruling
out 1 because it can’t be used as a base) are the first d primes.

For large d it would be cumbersome to have n be a multiple of a power
of each pj used. We then find that no values of n are especially good for
Halton sequences. Powers of 10 may then be ok, not because they are especially
good, but instead because no other sample sizes are especially good either. The
variables getting base 2 or 3 in the Halton sequence will tend to have the best
equidistribution and so it makes sense to use them on the input dimensions
thought to be most important.

The Halton sequence is extensible. If we don’t need an extensible sequence,
then a scheme of Hammersley is preferable.

Definition 15.3. The Hammersley sequence x1,x2, · · · ,xn ∈ [0, 1)d has

© Art Owen 2019 do not distribute or post electronically without author’s
permission

20 15. Quasi-Monte Carlo

xi1 = (i−1)/n and xij = φpj−1(i−1) for j = 2, . . . , d where pj is the j’th prime
number.

The Hammersley sequence samples the first variable xi1 with equispaced
points and then uses a d−1-dimensional Halton sequence for the rest of the vari-
ables. By taking smaller bases than the Halton points use, better equidistribu-
tion is obtained. In practice, the first dimension can instead be xi1 = (i−1/2)/n
and the others can be any n consecutive values from a d−1-dimensional Halton
sequence. The Halton and Hammersley sequences both achieve low discrepancy.

Theorem 15.7. For the Halton sequence with n > 2,

D∗n(x1, . . . ,xn) 6
1

nd!

d∏
j=1

(
bpj/2c log(n)

log(pj)
+ d

)
+O

(
log(n)d−1

n

)
. (15.14)

For the Hammersley sequence with n > 1,

D∗n(x1, . . . ,xn) 6
1

n(d− 1)!

d−1∏
j=1

(
bpj/2c log(n)

log(pj)
+ d− 1

)
+O

(
log(n)d−2

n

)
(15.15)

Proof. These are derived from theorems presented in Chapter 2 of Dick and
Pillichshammer (2010). They are based on the work of Atanassov (2004) who
attained a notable reduction in the lead constant, compared to the original
results of Halton (1960) and Hammersley (1960).

Equation (15.14) shows D∗n = O(n−1(log n)d) for the Halton sequence. The
non-extensible Hammersley sequence attains the slightly better rate D∗n =
O(n−1(log n)d−1). Using bounds on the size of the j’th prime number, Dick and
Pillichshammer (2010) show that the lead term inD∗n is at most 7 log(n)d/(2ddn)
for the Halton sequence and 7 log(n)d−1/(2d−1(d− 1)n) for the Hammersley se-
quence.

The Halton sequence has a problem for large values of d. Figure 15.6 shows
three pairwise projections of the first 1000 points. They correspond to the last
two dimensions when d = 10 or 20 or 30. The projection of xi onto their 29’th
and 30’th dimensions will not be stratified if we use fewer than n = 109×113 =
12317 points. It will be exactly stratified if we use a multiple of 12317 points
and approximately stratified if n � 12317, but otherwise the projection might
be bad, as shown.

The bad projection in the third panel of Figure 15.6 becomes even worse
when we adjoin the 28’th prime and look at xi,28:30 in three dimensions. The
two dimensional projection shows a handful of nearly diagonal stripes. The
three dimensional projection similarly shows such stripes as a handful of line
segments in the unit cube, leaving a large void.

The Halton sequence can be improved, by scrambling its digits as described
next. First we introduce a generalized van der Corput sequence with xi =

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.5. van der Corput and Halton sequences 21

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Bases 23 & 29

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

Bases 67 & 71

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

Bases 109 & 113

Some projections of the Halton sequence

Figure 15.6: Each panel shows a two dimensional view of 1000 points of the
Halton sequence, starting at φb(1). From left to right, the bases are for the 9’th
and 10’th primes, the 19’th and 20’th primes, and the 29’th and 30’th primes.

φb,π(i− 1) where

φb(i;π) =

∞∑
k=0

π
(
dk,b(i)

)
b−k−1. (15.16)

where π is a permutation of {0, 1, . . . , b− 1}, and as before, i has base b digits
dk,b(i). There is a reason to prefer permutations with π(0) = 0. The integer
i has only finitely many nonzero digits dk,b(i), and taking π(0) = 0 means we
only need to sum finitely many terms to compute φb(i;π). The alternative is to
sum only those terms that affect a finite precision floating point representation
of xi.

A scrambled Halton sequence x1,x2, · · · has xij = φpj (i−1;πj) for i > 1
and j = 1, . . . , d, where pj is the j’th prime number and πk is a permutation
of {0, 1, . . . , k − 1} for which πk(0) = 0. Taking xij = φpj (i;πj) instead avoids
starting at (0, . . . , 0). There are numerous proposals for the permutations πk.

A proposal due to Faure (1992) is widely used and one of the simplest to
describe. The first few permutations are:

π2 = (0 1)

π3 = (0 1 2)

π4 = (0 2 1 3)

π5 = (0 3 2 1 4)

π6 = (0 2 4 1 3 5)

π7 = (0 2 5 3 1 4 6)

π8 = (0 4 2 6 1 5 3 7).

(15.17)

© Art Owen 2019 do not distribute or post electronically without author’s
permission

22 15. Quasi-Monte Carlo

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Bases 23 & 29

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Bases 67 & 71

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Bases 109 & 113

Projections of a scrambled Halton sequence

Figure 15.7: This figure shows the points from Figure 15.6 after applying Faure’s
permutations to their digits.

These permutations may be defined recursively. For even b, there is a simple
pattern relating πb to πb/2. Letting b = 2k with an integer k > 2, the rule is

πb = (2πk, 2πk + 1).

For odd b the rule is a bit more complicated. If b = 2k + 1 for integer k > 1,
then for j = 0, . . . , 2k − 1 let

η(j) =

{
π2k(j), π2k(j) < k

π2k(j) + 1, π2k(j) > k,

and put
π2k+1 = (η(0 : (k − 1)), k, η(k : (2k − 1))).

The bad projections from Figure 15.6 are replotted in Figure 15.7 after
applying the permutations from Faure (1992) to their digits. The result is a
substantial improvement, though Exercise 15.8 has a cautionary note. There
have been many more proposals for deterministic scrambling of the digits of
the Halton sequence. A related idea is to use leaped sequences, defined by
xij = φpj (`(i − 1)). Here ` > 1 is a leaping constant that should be relatively
prime to all the pj that are used. In §17.10 we will look at a proposal that
chooses the permutation at random.

The Halton sequence is somewhat out of favor compared to digital nets
presented in §15.7 as well as the lattice methods in Chapter 16. It remains
popular, in part because it is very easy to program. It can be used for any
number of sample points n in any dimension d.

The Halton sequence is extensible in dimension, meaning we can add a
d+ 1’st dimension to our input points. Suppose for example that f(x) = fd(x)
follows a process through d time steps using x ∈ [0, 1]d. If we later want to up-
date our n values yi,d = fd(xi,1, . . . , xi,d) to get yi,d+1 = fd+1(xi,1, . . . , xi,d+1)

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.6. Example: the wing weight function 23

Variable Range Meaning

Sw [150, 200] wing area (ft2)
Wfw [220, 300] weight of fuel in the wing (lb)
A [6, 10] aspect ratio
Λ [−10, 10] quarter-chord sweep (degrees)
q [16, 45] dynamic pressure at cruise (lb/ft2)
λ [0.5, 1] taper ratio
tc [0.08, 0.18] aerofoil thickness to chord ratio
Nz [2.5, 6] ultimate load factor
Wdg [1700, 2500] flight design gross weight (lb)
Wp [0.025, 0.08] paint weight (lb/ft2)

Table 15.2: Variables and their ranges for the wing weight function.

we can use input points xi,d+1 for i = 1, . . . , n. To be more concrete, if
fd+1(xi,1, . . . , xi,d+1) is of the form gd+1(yi,d, xi,d+1) for some function gd+1

then the updates are simple and we don’t even need to store the prior xij val-
ues. The Hammersley sequence is similarly extensible in dimension d, but it is
not extensible in n.

15.6 Example: the wing weight function

The following function is a model for the weight of a wing of an aircraft

0.036S0.758
w W 0.0035

fw

(A

cos2(Λ)

)0.6

q0.006λ0.04
(100tc

cos(Λ)

)−0.3

(NxWdg)0.49 + SwWp

taken from the virtual library of simulation experiments test functions of Sur-
janovic and Bingham (2013). The variables’ meanings and ranges are given in
Table 15.2. The virtual library contains code to implement this function as well
as references to its origin. Note that Λ is given in degrees, from −10 to 10. It
then lies between ±10π/180 radians, so cos(Λ) does not approach zero, and the
wing weights are bounded.

We will study the average of this function over the 10-dimensional hypercube
defined by its input variables’ ranges. Our integrand on [0, 1]10 first scales
each variable to its range and then computes the wing weight. One would not
ordinarily seek the average weight of a randomly designed airplane wing. This
example is useful for illustration because it has a scientific/engineering origin
while not requiring access to specialized proprietary software to compute it. We
will also ignore the fact that nine of the ten input variables can be integrated
out to yield an elementary closed form. The exception is Λ.

We can apply plain Monte Carlo as well as quasi-Monte Carlo sampling
to this integrand. Figure 15.8 shows cumulative averages of the wing weight
function using the first 20,000 points of the Halton sequence in 10 dimensions.
Only every 200’th point is plotted and we start plotting at n = 1000. The

© Art Owen 2019 do not distribute or post electronically without author’s
permission

24 15. Quasi-Monte Carlo

0 2000 4000 6000 8000 10000

26
6

26
7

26
8

26
9

Cumulative mean wing weight
Solid = Halton Dotted = Random

n

M
ea

n
w

ei
gh

t

Figure 15.8: The horizontal axis is the sample size n from 1000 to 10,000 in
steps of 200. The vertical axis is the cumulative average of the first n wing
weight values. A solid line is used for the Halton sequence. Ten dotted lines
show plain Monte Carlo.

Halton sequence in 10 dimensions does not have any especially good sample
sizes, so little to no harm is done by using round numbers for n.

From Figure 15.8 it appears that the QMC rule is doing better than plain
MC. The Halton cumulative values stabilize more quickly than the MC ones
and they fluctuate less. Of course, we don’t know the error because we don’t
know the true integral µ, and if we did know µ we would not be using QMC.
By comparison, for MC, the fluctuations within curves are about O(1/n) while
those between curves are about O(1/

√
n), the same as our MC error. For

QMC, we do not have an estimate of between curve error until we randomize
as in Chapter 17. As noted above, the Koksma-Hlawka bound does not tell us
how accurate µ̂ is and we cannot be sure whether n = 20,000 is large enough for
the asymptotic rate to be relevant. Despite this doubt, we are left thinking that
QMC is probably better in this instance, but we don’t have evidence as strong
as we would like much less a numerical estimate of error. This is a fundamental
difficulty with QMC and it is the primary motivation for RQMC in Chapter 17.

The Halton cumulative means in Figure 15.8 appear to be drifiting up as n
increases. A possible explanation is that the cumulative means of the inputs
tend to approach 0.5 from below, and the wing weight function is monotone
increasing in most of its inputs. Perhaps antithetic sampling with the Halton
sequence would improve the estimation of mean wing weight. Exercise 15.9 asks

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.7. Digital nets and sequences 25

you to investigate that possibility.

15.7 Digital nets and sequences

One problem with the Halton sequence is that as d increases, a larger value of
n is required to get meaningful stratification. For d = 5, consecutive blocks
of 2 × 3 × 5 × 7 × 11 = 2310 points have a full 5-dimensional stratification.
For d = 10, the product of the first 10 primes is 6,469,693,230, so that no
10-dimensional stratification appears until over 6 billion points have been used.

A second problem with the Halton sequence is that pairs (xi1, xi2) are strat-
ified in consecutive blocks of 6 points while pairs (xi1, xi3) are stratified every
10 points and pairs (xi2, xi3) are stratified every 15 points. It would be better
to have a rule where all

(
d
2

)
pairs of variables can be stratified with the same

value of n.

For large d it may be unrealistic to expect that we attain a full d-dimensional
stratification. But it should be feasible to stratify all the two dimensional
marginal distributions simultaneously using about d2 points. For instance, us-
ing randomized orthogonal arrays (see §10.4) it is possible to stratify all

(
d
s

)
s-dimensional coordinate projections using ps points for any prime number
p > d− 1.

What is needed is something like a Halton sequence with the same base
b used for all dimensions. The solution is found in digital nets as described
below. The digital nets we present are known as (t,m, s)-nets in base b, for
integer parameters t, m, s and b, with s corresponding to the dimension of the
space for x. Usually s = d, that is we sample on a (t,m, d)-net. It is useful
to let s differ from d, because there are ways to use an s-dimensional set of
points while solving a d-dimensional problem. For example, the higher order
nets in §15.12 as well as Latin supercube sampling in §17.9 use s 6= d.

Let d > 1 and b > 2 be integers. An elementary interval in base b is a
subinterval of [0, 1)s of the form

E =

s∏
j=1

[cj
bkj

,
cj + 1

bkj

)

for integers kj and cj , with kj > 0 and 0 6 cj < bkj . For d = 1, these are the
usual sort of interval.

Figure 15.9 shows some elementary intervals in base b = 5 and dimension
s = 2. In the upper left corner we have the entire unit square [0, 1)2 which
is, trivially, an elementary interval. The more interesting ones are those that
impose some restrictions on one or more components of x. We say that E is gen-
uinely r-dimensional if kj > 0 holds for at least r of the indices j = 1, . . . , s.
Elementary intervals in base b are also called b-ary boxes, b-adic intervals, or
cells.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

26 15. Quasi-Monte Carlo

Some elementary intervals in base 5

Figure 15.9: Each panel shows the unit square divided into elementary intervals
in base 5. Panels in the left, middle and right columns are divided into 1, 5, and
25 vertical strips respectively. Panels in the top and bottom rows are divided
into 1 and 5 horizontal strips respectively.

Definition 15.4. Let m > 0, b > 2 and s > 1 be integers. The sequence
x1, . . . ,xbm ∈ [0, 1)s is a (0,m, s)-net in base b if every elementary interval
E in base b of volume b−m contains exactly 1 of the points xi.

Figure 15.10 shows some (0,m, 2)-nets in base 5. The number of elementary
intervals balanced by a net can be much larger than n. The (0, 3, 2)-net in
Figure 15.10 shows the first two dimensions of a (0, 3, 5)-net in base 5. For

each vector of scales (k1, . . . , k5) with kj > 0 and
∑5
j=1 kj = 3, there are 125

rectangular cells of volume 1/125 in [0, 1)5 that each contain exactly 1 of the
125 points. Some combinatorial arguments show that there are 35 such tilings,
and so n = 125 points of the net manage to balance 35 × 125 = 4375 cells of
volume 1/125. Of these, only 5 × 125 = 625 would have been balanced in a
Latin hypercube sample. The method of control variates §8.9 can be used to
take account of known stratum volumes by introducing regression coefficients.
But it would be difficult to use 4375 control variate regression parameters with
only n = 125 data points. As m increases, the number of elementary intervals
balanced grows more quickly than n = bm does.

The very strong multiple stratification that (0,m, s)-nets have is not always
possible. For some choices of m, s and b, no such net exists. By weakening the
criterion somewhat, more constructions become available.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.7. Digital nets and sequences 27

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

A (0,3,2) net

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

A (0,4,2) net

Two digital nets in base 5

Figure 15.10: This figure shows two digital nets in the unit square in base 5.
The one on the left has 125 points. The one on the right has 625 points. Dark
reference lines 1/5 apart and light ones 1/25 apart show boundaries of some
elementary intervals.

Definition 15.5. Let m > t > 0 be integers. The sequence x1, . . . ,xbm ∈ [0, 1)s

is a (t,m, s)-net in base b if every elementary interval in base b of volume
bt−m contains exactly bt points of the sequence.

Cells with volume bt/n contain exactly bt of the n sample points, match-
ing their proportion of the volume of [0, 1)s. Smaller values of t imply better
equidistribution. The upper limit on t is from the trivial case t = m, which
only states that all points of the sequence are in [0, 1)s. A (t,m, s)-net in base
b is ordinarily a (t + 1,m, s)-net in the same base. The only exceptions are
from cases where t is at the upper limit m and so cannot be raised. A strict
(t,m, s)-net in base b is one that is not also a (t− 1,m, s)-net in base b. Digital
nets have low discrepancy:

Proposition 15.2. The star discrepancy of a (t,m, s)-net in base b with m > 0
satisfies

D∗n 6 B(s, b)bt
(log n)s−1

n
+O((log n)s−2)

where

B(s, b) =


(b− 1

2 log b

)s−1

s = 2, or b = 2, s = 3, 4

1

(s− 1)!

(bb/2c
log b

)s−1

otherwise.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

28 15. Quasi-Monte Carlo

Proof. This is Theorem 4.10 of Niederreiter (1992b).

The (t,m, s)-nets are finite sequences. There is an extensible version of them
as follows.

Definition 15.6. For t > 0, the infinite sequence x1,x2, · · · ∈ [0, 1)s is a (t, s)-
sequence in base b if for all k > 0 andm > t the sequence xkbm+1, . . . ,x(k+1)bm

is a (t,m, s)-net in base b.

A (t, s)-sequence is really an astonishing object. It is the concatenation of an
infinite sequence of (t,m, s)-nets for any m > t. Those nets can be grouped into
blocks of b consecutive ones. Each such block is a (t,m + 1, s)-net. Similarly,
those (t,m + 1, s)-nets are nested within (t,m + 2, s)-nets within (t,m + 3, s)-
nets and so on. As n increases through powers of b, the volume of balanced
elementary intervals falls off as bt−m = bt/n and their number increases rapidly.

The construction and analysis of digital nets and sequences is a very spe-
cialized topic. We will look at the properties and algorithms for some nets,
but not delve into how they are constructed, apart from §15.10 which gives an
elementary example.

The Faure sequences are (0, s)-sequences in base p, where p > s is a prime
number. An early implementation of the Faure sequence is in Fox (1986). The
Faure net is a (0,m, s)-net in base p obtained as the first pm points of the Faure
sequence. The nets in Figure 15.10 are leading subsequences of Faure’s (0, 5)-
sequence in base 5. The Hammersley device of adding one equispaced variable
also works for Faure’s (0,m, s)-net allowing the construction of a (0,m, p+1)-net
in base p for prime p.

Nets from the Faure sequences have a disadvantage when d is large. We need
p to be a prime number at least equal to d (or d − 1 if using the Hammersley
device). We may use the first d components of the base p Faure sequence, but
that sequence balances no genuinely 2-dimensional elementary intervals unless
n is a multiple of p2 > d2. If n is much below p2, then some two dimensional
projections of the Faure points will be very unevenly sampled. The appearance
is quite similar to stripes that we see in Figure 15.6 for the Halton sequence
projected on the j’th and k’th variables when n/(pjpk) is somewhat smaller
than 1.

Even with n = p2, there can be bad higher dimensional projections. For
example, the first 121 points of the Faure sequence in base 11 have some strange
projections. From Figure 15.11 we see that xi4 + xi6− xi10 + xi11 takes on only
3 distinct values −1, 0 and 1, for 1 6 i 6 121. As x varies through the unit
cube, this projection takes values from −2 to 2 (not uniformly distributed) and
so the sampled values are not only clustered but are also confined to a central
subregion. There are other undesirable projections and some pairs of them
reveal very structured patterns.

The first multidimensional digital sequences to be constructed were those
of Sobol’ (1967). He called them LPτ squences but now they are more more
widely known as Sobol’ sequences. They are (t, s)-sequences in base 2. Here
t = ts is a non-decreasing function of s. The first few values are given in

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.7. Digital nets and sequences 29

−2 −1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

●●●●●●●●●●●●

● ●●

●●

●●●

●●●

●

●● ●●●

●

●●● ●

●●

●●

● ●

●●●●●●

●

●

●

●●● ●●●

●

●●●●

●●●

●

● ●

● ●

●

●●●

●●●●

●

●●● ●●●

●

●

●

●●●●●●

● ●

●●

●●

● ●●●

●

●●● ●●

●

●●●

●●●

●●

●● ●

●

2x2 ++ x3 −− x6 ++ x8 −− 2x10 −− x11

x 3
−−

x 6
−−

x 8
++

x 1
1

−1.0 −0.5 0.0 0.5 1.0
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

●●●●●●●●●●●● ● ●

●

●●●●●●

●

●● ●● ●●

●●

●

●●

●

●● ●●● ●●

●

●●●

●●● ●

●●

● ●●●

●●●●

● ●

●●●

● ●

● ●

●●●

● ●

●●●●

●●● ●

●●

● ●●●

●●●

●

●● ●●● ●●

●

●●

●

●●

●● ●● ●●

●

●●●●●●

●

● ● ●

x4 ++ x6 −− x10 −− x11

x 1
−−

x 2
−−

x 8
++

x 9

Two projections of 121 Faure points

Figure 15.11: This figure shows two projections of the first 121 points of the
11-dimensional Faure sequence in base 11. In the left panel, there are 61 points
at the center and 10 in each of the other sites. In the right panel, 57 points
project to the origin, 4 points project to each corner, and 12 points project to
the center of each side.

Table 15.3. The Sobol’ construction for dimension s+ 1 is obtained by adding
the s + 1’st variable to the points of the Sobol’ construction for dimension s.
That is, Sobol’ sequences are extensible in dimension. The earlier dimensions
are constructed to have better equidistribution properties than the later ones.
When we are able to order the inputs to f from most important to least, then
we should use the first components of the Sobol’ points on the most important
inputs to f .

A (t,m, s)-net in base 2 can be formed from the first n = 2m points of
Sobol’s (t, s)-sequence. Such nets are not necessarily strict (t,m, s)-nets. The
value of t can be lower for a net than the sequence it came from. For each
j = 1, . . . , s, the points {x1j , . . . , x2mj} ⊂ [0, 1) of a Sobol’ net are in fact a
(0,m, 1)-net in base 2. That is, the Sobol’ points have very uniform univariate
projections. The Sobol’ points can have some bad 2 dimensional projections.
Bad projections of Sobol’ points have quite a different appearance than bad
projections of Halton or Faure points. Figure 15.13 shows some of them, based
on the code from Bratley and Fox (1988).

There are multiple implementations of Sobol’s idea and they differ in which
projections are problematic, but they generally have more uniformity in pro-
jections of lower numbered dimensions. Because Sobol’s points are defined in
base 2, some of the implementations exploit bit level operations to gain greater
speed.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

30 15. Quasi-Monte Carlo

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

n = 128

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

n = 256

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

n = 512

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

n = 1024

Sobol' points

Figure 15.12: Points (xi1, xi2) for i = 1, . . . , n of a Sobol’ sequence.

There are many versions of Sobol’s construction differing in what are called
‘direction numbers’. The points in Figure 15.13 use direction numbers from Brat-
ley and Fox (1988). Those provide Sobol’ sequences for dimensions up to 40.
A greatly expanded set of direction numbers going to much higher dimensions
and paying attention to two dimensional projections has been produced by Joe
and Kuo (2008). They give 21201 as the ‘target dimension’ of their searches
for direction numbers. Figure 15.14 shows greatly improved projection for xi,31

versus xi,26 that was problematic in Figure 15.13. It also includes two of the
subjectively worst projections of the first 1024 points for xi ∈ [0, 1]40. Those
problematic projections fill in shortly after, with a complementary set of points
placed in the gaps. This takes place at sample sizes that are still not large for
40-dimensional sampling. Sobol’ et al. (2011) provide direction numbers for up

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.7. Digital nets and sequences 31

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x2 versus x1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x38 versus x37

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x26 versus x31

Three projections of 1024 Sobol points

Figure 15.13: This figure shows three projections of the first 1024 points of the
Sobol’ sequence in [0, 1]40 using direction numbers from Bratley and Fox (1988).
The left panel shows a very good projection of the first two components. The
middle panel shows shows a less satisfactory projection and the right panel
shows one with a serious flaw (that disappears when n = 214).

to 65,536 dimensions and cite several other published papers providing direction
numbers.

The lead constant in the discrepancy bound for digital nets used to be much
better, for large s, than that for the Halton and Hammersley sequences. That
was all changed by Atanassov (2004) who sharpened the bounds for those se-
quences. He reduced the upper bounds on their leading constants by a factor
of about s!. The sequences themselves did not change, and it is possible that a
sharper bound could yet be found for digital nets.

Digital sequences are extensible, though we should not extend them one
point at a time. If we use n = bm points from a (t, s)-sequence then (for m > t)
all elementary intervals of volume bt−m are balanced. The next sample size that
retains all the balance we had at n = bm is n′ = 2bm.

If we increase n along a sequence of values of the form λbm, where 1 6 λ < b
and m > t, then any elementary interval that was balanced at some value
of n remains balanced for all future values of n. The first n = λbm points
of the (t, s)-sequence are (when m > t) equidistributed over the same set of
elementary intervals that a (t,m, s)-net is. For 1 < λ < b, those points do not
form a (t,m, s)-net because λbm is not a power of b. A second equidistribution
property of x1, . . . ,xλbm is as follows: no elementary interval of volume bt−m−1

has more than bt points of the sequence. This holds because such an elementary
interval has only bt points of the first bm+1 points of the (t, s)-sequence.

Definition 15.7. Let λ, t,m, s, b be integers with s > 1, m > t > 0, b > 2 and
1 6 λ < b. A sequence x1, . . . ,xλbm ∈ [0, 1)s is called a (λ, t,m, s)-net in
base b if every elementary interval in base b of volume bt−m contains λbt points

© Art Owen 2019 do not distribute or post electronically without author’s
permission

32 15. Quasi-Monte Carlo

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x31 versus x26
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x25 versus x35
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x8 versus x26

Sobol' points with improved direction numbers

Figure 15.14: The first panel shows improved projection for xi,31 versus xi,26

using projection numbers of Joe and Kuo (2008). The next two panels show
subjectively poor projections of those points. Most projections are much better.
The holes in the first panel ‘fill in’ when n = 4096. The second and third ones
fill in for n = 2048.

Dimension s 1 2 3 4 5 6 7 8 9 10

Sobol’s t 0 0 1 3 5 8 11 15 19 23
Niederreiter-Xing’s t 0 0 1 1 2 3 4 5 6 8

Table 15.3: This table shows the quality parameter t for Sobol’ and Niederreiter-
Xing (t, s)-sequences in base 2, where s 6 10.

of the sequence and no elementary interval in base b of volume bt−m−1 contains
more than bt points of the sequence.

The smallest known values of t for digital nets come from a construction
of Niederreiter and Xing (1996). Pirsic (2002) describes a computer implemen-
tation. Table 15.3 shows some of the resulting t values for the version in base 2.

The Niederreiter-Xing nets and sequences (NX-nets and NX-sequences be-
low) have superior t parameters that are close to known lower bounds for t
as a function of dimension s and base b. They are not as widely used as the
Sobol’ points. In some empirical comparisons, they do not seem to give much
more accurate results than other methods. For example, see Hong and Hicker-
nell (2003). Part of the reason is that the high t value for Sobol’ sequences is
somewhat misleading. Sobol’ nets (finite n) usually have better t parameters
than their corresponding infinitely long sequences. Moreover, lower dimensional
projections of a net can have smaller t values than the net itself. These consid-
erations may play more strongly in favor of the Sobol’ sequences than the NX
sequences.

If the t parameter of projections really explains why NX-sequences do not

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.8. Effect of projections 33

attain greatly improved accuracy, then it may be that NX-nets will prove to be
superior on the very hardest fully d-dimensional problems as described in the
project in Exercise 15.13.

15.8 Effect of projections

When investigating QMC points, we often consider their one, two, and three-
dimensional coordinate projections, that is, their marginal distributions. The
bivariate projections are most frequently investigated because we usually know
that the univariate projections are very good, and bivariate projections are
easier to investigate than the trivariate projections. In general, the lower the
dimension we project points into, the better the equidistribution. It is easy
to see, for example, that D∗n(x1,1:(d−1), . . . ,xn,1:(d−1)) 6 D∗n(x1,1:d, . . . ,xn,1:d).
Furthermore, the asymptotic bounds on D∗n attain more favorable rates in low
dimensions than in high.

The role of coordinate projections can be understood through the ANOVA
decomposition of f (see Appendix §A). We write

f(x) =
∑

u⊆{1,...,d}

fu(x) (15.18)

where fu depends only on the components xj with j ∈ u. The component f∅ is
a constant function, f∅(x) = µ, which gets correctly averaged over any sample.
The other fu integrate to 0. Therefore the QMC error is

|µ̂− µ| =
∣∣∣∑
u 6=∅

1

n

n∑
i=1

fu(xi)
∣∣∣ 6 ∑

u6=∅

∣∣∣ 1
n

n∑
i=1

fu(xi)
∣∣∣

6
∑
u6=∅

D∗n(x1u, . . . ,xnu)VHK(fu). (15.19)

Now let |u| denote the cardinality of u. In examples, it is common to find that
subsets u with large |u| have effects fu that are so small that they contribute
little to the sum in (15.19). Although f is of nominal dimension d, it may be
closely approximated by a sum of functions of much lower dimension. It is in
this sense of lower effective dimension than d. See §17.2.

For subsets u of small cardinality, the effects fu may be large, but our
points xi may have low dimensional projections xiu with small discrepancy. The
discrepancy bound for projected points is O(log(n)|u|−1/n) not O(log(n)d−1/n).
For instance, if xi form a (t,m, s)-net in base b then xiu form a (t′,m, |u|)-net
in base b too, where t′ is at most t and could be lower. Even with t′ = t,
if m > t + |u| then the xiu have some nontrivial stratification over elementary
intervals while the xi ∈ [0, 1]d may fail to balance any d-dimensional elementary
interval smaller than [0, 1]d itself. When xiu have small discrepancy then the
term for u in (15.19) is small if VHK(fu) is not large. In the best case, every
term on the right of (15.19) is small because at one or the other of its factors is

© Art Owen 2019 do not distribute or post electronically without author’s
permission

34 15. Quasi-Monte Carlo

small. Then QMC delivers an estimate for our high dimensional problem with
the accuracy we would have expected for a lower dimensional one.

It is not a theorem that f must be dominated by low dimensional parts that
are amenable to QMC sampling. It is a common though not universal empirical
finding and it provides the best use case for QMC methods. Sets of such f
can be described through the weighted spaces in §7.7. QMC methods can be
customized to a specific weighted space; see the end notes on polynomial lattice
rules. Equation (15.18) decomposes f into ANOVA components but there are
other such decompositions in §xxx and the argument behind (15.19) applies to
any of them.

15.9 Example: synthetic integrands

We know from Theorem 15.5 that QMC is much better than Monte Carlo when
n is large enough and f is of bounded variation in the sense of Hardy and Krause.
Unfortunately, the proven bounds are hard to apply for specific n and f . Here
we look at some examples with known integrals to get a sense of whether the
advantage of QMC applies to realistic sample sizes n, or is purely asymptotic.

Numerical examples serve as spot checks on the theory. To investigate ev-
ery important issue numerically would require an unmanageable number of ex-
amples. Instead, we consider a small number of examples seeking qualitative
insights. In some examples, the ANOVA representation (15.19) makes it rea-
sonable that QMC should do well. In others, such as functions of unbounded
variation, poor performance is quite plausible but by no means assured.

In the examples here, we see QMC beating MC by enormous factors when
the function is smooth and low dimensional. Also, MC does much better than
QMC on some very high dimensional functions. For a high dimensional func-
tion dominated by smooth low dimensional ANOVA components, QMC holds a
strong advantage.

It is convenient to take f to be a product of univariate functions. Let

g = (g1, . . . , gd) be a vector of functions on [0, 1] satisfying
∫ 1

0
gj(x) dx = 0 and∫ 1

0
gj(x)2 dx = 1. For β ∈ Rd define

f(x) = fβ,g(x) =

d∏
j=1

(1 + βjgj(xj)) . (15.20)

We know that µ =
∫
f(x) dx = 1 and so it is easy to study the error of a QMC

rule. Similarly

σ2 =

∫
f(x)2 dx− 1 =

d∏
j=1

(1 + β2
j)− 1

is known, so the Monte Carlo RMSE σ/
√
n, is available for comparison, with-

out having to actually do any MC sampling. What makes product functions

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.9. Example: synthetic integrands 35

very convenient is that their entire ANOVA decomposition (Appendix §A) is
available:

f(x) =
∑

u⊆{1,...,d}

fu(x) where fu(x) =
∏
j∈u

βjgj(xj),

which includes f∅(x) = 1 by convention. For u 6= ∅, the variance of fu is
σ2
u =

∏
j∈u β

2
j .

Increasing the magnitude of β makes the higher dimensional ANOVA com-
ponents relatively larger and makes the quadrature problem harder. Also, in-
dividual variables xj with larger values of |βj | are more important than the
others.

We begin with an easy problem taking gj(x) =
√

12(x− 1/2) and βj = 1/5
for j = 1, . . . , 5, leading to

f1(x) =

5∏
j=1

(
1 +

√
12

5
(x− 1/2)

)
.

This choice of β is one where even Latin hypercube sampling, which only strat-
ifies the one dimensional projections, makes a meaningful improvement. From
the ANOVA decomposition we obtain the best additive approximation to f ,

fadd(x) =
∑
|u|61

fu(x) = 1 +

5∑
j=1

βjgj(xj).

This additive approximation has variance σ2
add =

∑5
j=1 β

2
j . Latin hypercube

sampling (§10.3) has variance σ2
lhs/n+o(1/n) where σ2

lhs = σ2−σ2
add =

∏5
j=1(1+

β2
j) − 1 −

∑5
j=1 β

2
j . For f1, Latin hypercube sampling reduces the variance by

a factor of about 13.
Figure 15.15 shows results for the Halton, Faure and Sobol’ sequences with

f1 for n 6 54 = 3125. They all have errors smaller than σ/
√
n. The Halton

sequence has an error comparable to the Latin hypercube sampling RMSE (for
these n) while the other sequences yield smaller errors.

To judge the attained convergence rate for QMC, it is better to look at errors
on a logarithmic scale. One difficulty with the logarithmic scale is that when
two consecutive errors µ̂n − µ and µ̂n+1 − µ have opposite signs, one or both
is typically very close to zero. We can’t know in practice when our error has
changed sign and so, when looking at errors on a log scale we should ignore a few
stray values that are far below the others; they don’t correspond to actionable
information. We can also mitigate this difficulty by plotting |µ̂n − µ| for every
k’th value of n.

Figure 15.16 shows the QMC errors for f1 on a logarithmic scale for n up
to 56 = 15,625. The Halton sequence makes steady progress, showing a rate
better than n−1/2 though not, on this range of sample sizes, as good as n−1.
It eventually gets better than Latin hypercube sampling and by n = 15,625 it

© Art Owen 2019 do not distribute or post electronically without author’s
permission

36 15. Quasi-Monte Carlo

0 500 1000 1500 2000 2500 3000

0.
98

5
0.

99
5

1.
00

5
1.

01
5

QMC estimates for a 5 dimensional problem

n

µµ̂

Figure 15.15: This figure shows quasi-Monte Carlo estimates µ̂ of µ =∫
[0,1]5

f1(x) dx for the example function f1. The horizontal axis has the sample

size n over the range from 52 = 125 to 54 = 3125. From top to bottom, light-
est gray to darkest, the results are for the Sobol’ sequence, the Faure sequence
(base 5) and the Halton sequence. The horizontal reference line is at the true
mean µ = 1. The dotted reference curves are at µ plus or minus one Monte
Carlo standard deviation. The dashed curves are at µ plus or minus one Latin
hypercube standard deviation.

shows an error between 1/10 and 1/100 of σ/
√
n. The Faure sequence attains

better results than the Halton sequence. It makes uneven progress resembling
stair steps. Its efficiency increases greatly as n approaches a power of 5, where
a new set of elementary intervals become balanced. In this example, both Faure
and Sobol’ sequences perform close to the theoretical 1/n rate when n is a power
of their respective bases. The Sobol’ sequence performs better than the Faure
sequence between powers of its base. Its error changes sign numerous times near
the end of the run with the zero crossings complicating a logarithmic plot of the
errors.

It is interesting to consider the effects of dimension on accuracy for this exam-
ple. We can inspect the purely 5-dimensional component (0.2

√
12)5

∏5
j=1(xj −

1/2) of f1 and see how close its average is to 0. The results for n 6 15,625
(not plotted) are that the Halton sequence makes absolute errors that fluctu-
ate around σ/

√
n. The Faure sequence has errors generally above σ/

√
n. The

Sobol’ sequence has errors, at powers of 2, that trend more steeply downwards
than 1/

√
n, ending up below σ/

√
1000n. The Sobol’ sequence in [0, 1]5 for

n 6 15,625 has more thorough 5 dimensional stratification than either of the
other two sequences. This brings it better performance on the highest ANOVA

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.9. Example: synthetic integrands 37

200 500 1000 2000 5000 10000

5e
−

05
5e

−
04

5e
−

03
5e

−
02

●

●

●

●

●

●

●

●

●

●

●

●

●

QMC error trends for a 5 dimensional problem

n

µµ̂
−−

µµ

Figure 15.16: This figure shows quasi-Monte Carlo errors |µ̂−µ| for the example
function f1. The horizontal axis has the sample size n from 52 = 125 to 56 =
15,625. From top to bottom, darkest gray to lightest, the results are for the
Halton sequence, the Faure sequence (at multiples of 25) and the Sobol’ sequence
(at multiples of 32). The solid reference lines are proportional to 1/n, the
approximate asymptotic convergence rate for QMC. The dotted reference lines
are the Monte Carlo RMSEs for sample sizes n, 10n, 100n, 1000n and 10,000n.
The open dots show Sobol’ errors when n is a power of 2. The solid dots show
Faure errors when n is a power of 5. At the final sample size the QMC errors
are just below 10−3σ/

√
n.

component of f1. The Faure sequence remains competitive on f1 because the
highest ANOVA component has small magnitude.

For a five dimensional and very smooth integrand, it would be possible to
use a quadrature rule based on a 5-dimensional grid. QMC is easier to use than
such 5-dimensional product rules. For example, the Sobol’ sequence works well
at values of n that are powers of 2. The simplest product rules would require
n to be the 5’th powers of an integer, so while usable they would be quite
cumbersome.

Next we consider a function f2 in 25 dimensions, where product rules are
completely infeasible. We suppose this time that each successive component of
x is less important than the previous one. We take βj = 1/(2j) and retain
gj(x) =

√
12(x− 1/2). That is

f2,d(x) =

d∏
j=1

(
1 +

√
3

j
(xj − 1/2)

)
.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

38 15. Quasi-Monte Carlo

1e+02 1e+03 1e+04 1e+05 1e+06

1e
−

06
1e

−
04

1e
−

02

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

QMC error trends for a 25 dimensional problem

n

µµ̂
−−

µµ
● Sobol' sequence

● Faure sequence

MC references

QMC reference

Figure 15.17: This figure shows quasi-Monte Carlo errors |µ̂−µ| for the example
function f2. The horizontal axis has the sample size n from 1 to almost 2 million.
Results from the Sobol’ sequence are plotted at n = 2k for k = 0, . . . , 20. Results
from the Faure sequence in base 29 are plotted for n = λ29k 6 2×294 for integer
n and λ. A solid point is shown for n = 29k. The dotted reference lines are at
σ/
√

10kn for (top to bottom) 0 6 k 6 6. The solid reference line is 1/n.

This function has finite variance for any d <∞ because for x ∼ U(0, 1)d,

log(E(f2,d(x)2)) =

d∑
j=1

log
(

1 +
1

4j2

)
6

1

4

∞∑
j=1

1

j2
=
π2

24
. (15.21)

That is σ2 6 exp(π2/24) − 1
.
= 0.51. The small magnitude of this variance

does not make f2 unrealistic, because effective (or otherwise) QMC methods
for integrating f2 are similarly effective on cf2 for c 6= 0. In particular, their
relative error |µ̂ − µ|/µ is unaffected by c as is the comparison between QMC
and MC. The variance at d = 25 is roughly 90% of the variance bound (15.21).
For d = 25, Latin hypercube sampling reduces the Monte Carlo variance by
about 9.1 fold.

Figure 15.17 shows results for this function using the Sobol’ sequence as well
as the Faure sequence in base 29. The Sobol’ sequence starts out with an error
equal to about σ/

√
n but turns the corner around n = 100 where the plot begins.

It makes steady progress roughly in proportion to 1/n from then on. The Faure
sequence has very large errors below n = 100, but we ordinarily would not
contemplate using fewer than 100 points in 25 dimensions so that shortcoming
is not serious. The Faure sequence at powers of 29 is nearly as good as the

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.9. Example: synthetic integrands 39

Sobol’ sequence. Between powers of 29, the Faure sequence is not steady, and
makes some relatively large errors. It has one very small error, presumably
a lucky outcome, near n = 700,000. The Sobol’ sequence has the advantage
here of using better equidistribution on the earlier and more important input
variables.

In this 25-dimensional example, QMC is able to attain, for n near 106, errors
comparable to the RMSE that Monte Carlo would have with n between 1010

and 1011.

For 25 variables there are 225−1 (over 33 million) ANOVA components that
contribute to the function and so we can partition the error into that many parts.
Table 15.4 illustrates some of them. For the highest order ANOVA component,
the full 25 way interaction, the Sobol’ sequence has an error of about 900 times
the Monte Carlo standard deviation σu/

√
n. The Faure sequence has an error

of about 1090σu/
√
n.

In this example, the 25 factor interaction
∏25
j=1 βjgj(xj) is integrated with

an error equal to roughly 1000 times the plain Monte Carlo RMSE. No fully
25-dimensional elementary interval was balanced by either set of QMC points,
so perhaps we should not have expected them to be better than MC. For Faure
points, that balance could not happen until n = 2925 ≈ 3.6 × 1036. For base
2 sequences like Sobol’s, the best available value of t, from the minT project
(Schürer and Schmid, 2009), is 31. So a 25-dimensional elementary interval
could be balanced by n = 231+25 ≈ 7.2 × 1016 points. From that same source,
there do exist (28, 53, 25)-nets in base 2 which could balance a 25-dimensional
elementary interval with n = 228+25 ≈ 9.0 × 1015 points. Even for d as low
as 25, getting nontrivial d-dimensional stratification with these digital nets is
unreasonably expensive.

This bad performance on that 25-dimensional interaction hardly matters
because that highest interaction accounts for only about 1.32 × 10−33 of the
variance of f . The interaction of the first 4 variables is relatively much more
important. The Sobol’ sequence makes an error about 10−9σu/

√
n for this

component while the Faure sequence error is about 1.67× 10−4σu/
√
n.

The Halton sequence was left out of this example. Exercise 15.11 is about
implementing Halton points for this example.

In these product functions, the accuracy promised by QMC is attained at
modest sample sizes for the low dimensional ANOVA components. We might
expect good results for QMC when f is dominated by smooth low dimen-
sional ANOVA components. We should not expect similar results for every
function, not even every product function. A spiky product using functions
such as gj(x) =

√
50(1x<0.01 − 1x>0.99) will obviously require larger n to get

good results. Similarly, we expect that highly oscillatory functions such as
gj(x) =

√
2 sin(2Kπx) with large K > 0 will require larger n before the QMC

rate is observed.

We have used Latin hypercube sampling as a yardstick. To live up to its
promise, QMC should at least be better than LHS. For product functions (15.20)
with monotonic gj(x), we know that antithetic sampling will improve on plain

© Art Owen 2019 do not distribute or post electronically without author’s
permission

40 15. Quasi-Monte Carlo

Variable Sobol’ Faure
subset u σ2

u/σ
2 Error vs MC Error vs MC

First 1 3.45×10−1 8.26×10−7 1.69×10−3 1.22×10−6 2.06×10−3

First 2 8.62×10−2 8.80×10−11 7.21×10−7 2.11×10−10 1.42×10−6

First 3 1.44×10−2 2.55×10−11 1.25×10−6 1.76×10−9 7.09×10−5

First 4 1.80×10−3 2.68×10−15 1.05×10−9 5.16×10−10 1.67×10−4

First 5 1.80×10−4 7.54×10−15 2.97×10−8 1.70×10−8 5.50×10−2

First 10 1.85×10−10 1.33×10−14 5.05×10−2 1.26×10−13 3.93×10−1

First 15 1.61×10−17 6.09×10−20 2.67×100 1.24×10−19 4.46×100

First 20 2.70×10−25 2.23×10−26 5.84×101 5.34×10−26 1.15×102

Last 1 1.38×10−2 3.30×10−8 1.69×10−3 4.90×10−8 2.06×10−3

Last 2 2.87×10−4 2.27×10−15 5.59×10−9 7.02×10−13 1.42×10−6

Last 3 6.24×10−6 2.44×10−19 2.76×10−11 7.64×10−13 7.09×10−5

Last 4 1.42×10−7 6.75×10−21 3.36×10−11 4.08×10−14 1.67×10−4

Last 5 3.38×10−9 2.01×10−17 4.20×10−6 3.20×10−13 5.50×10−2

Last 10 5.67×10−17 5.74×10−21 7.14×10−2 3.84×10−20 3.93×10−1

Last 15 4.92×10−24 2.26×10−26 3.24×100 3.78×10−26 4.46×100

Last 20 5.09×10−30 4.14×10−31 5.74×101 1.00×10−30 1.15×102

All 25 1.32×10−33 1.69×10−33 9.00×102 2.50×10−33 1.09×103

Table 15.4: QMC results for selected ANOVA components of the function f2,25.
The first column gives u ⊆ {1, 2, . . . , 25}. The second column shows σ2

u/σ
2,

the fraction of variance from the interaction u. The third column shows the
error of the Sobol’ sequence |µ̂u| = |(1/n)

∑n
i=1 fu(xi)|. The fourth column has√

n|µ̂u|/σu for the Sobol’ sequence. The next two columns give accuracy for the
Faure sequence. The Sobol’ data are for n = 220 = 1,048,576. The Faure data
are for n = 294 = 707,281.

Monte Carlo providing another yardstick. We can work out the antithetic sam-
pling variance of such products and they take a simple form for functions like
gj =

√
12(x− 1/2).

Proposition 15.3. Let f(x) have the product form (15.20) in which each func-
tion gj is antisymmetric: gj(x) = −gj(1 − x). For an even number n > 2, let

µ̂anti = (1/n)
∑n/2
i=1(f(xi) + f(1 − xi)) where xi ∼ U[0, 1]d for i = 1, . . . , n/2.

Then

Var(µ̂anti) =
2

n

bd/2c∑
k=1

∑
u⊆{1,...,d}
|u|=2k

∏
j∈u

β2
j . (15.22)

Proof. See Exercise 15.12.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.10. How digital constructions work 41

15.10 How digital constructions work

This section gives a simple illustration of the construction of a digital net. It
can be skipped by readers who simply want to use those nets. For a complete
account, see Dick and Pillichshammer (2010).

Digital nets are constructed by working with the base b expansion of the
digits of integers. As a simple example, we can construct a (0,m, 1)-net in base
b by using the first bm points of the van der Corput sequence in base b.

To get the idea of how a multidimensional digital net can be constructed we
look first at a small two dimensional example, a (0, 4, 2)-net in a prime base p,
used by Dick and Pillichshammer (2010). Then we consider the more general
setting.

We begin with the matrices

C(1) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and C(2) =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

Now suppose that we construct another matrix placing the first k1 rows of C(1)

above the first k2 rows of C(2), where kj > 0 and k1 + k2 = 4. The resulting
matrix is

Ck1,k2 ≡

(
C

(1)
1:k1

C
(2)
1:k2

)
where C

(j)
1:k has the first k rows of C(j). In this small example we will need each

Ck1,k2 to be invertible in arithmetic modulo p.
Here we find that Ck1,k2 is a permutation matrix: the product Ck1,k2v re-

verses the order of the last k2 elements of v. As a result Ck1,k2 is its own inverse
matrix. This can be seen by squaring Ck1,k2 in arithmetic modulo p.

More generally, matrices whose leading rows can be extracted and reassem-
bled into a combined matrix of sufficiently high rank are the crucial ingredient
in digital net constructions.

Now we construct our digital net. For integers i > 0, write i =
∑∞
k=0 dk(i)pk

with the digit retrieval function of §15.5. For 0 6 i < p4, the expansion of i
requires at most 4 digits. We put them in a vector of length 4, writing

ĩ =


d0(i)
d1(i)
d2(i)
d3(i)

 for 0 6 i < p4.

Now let yi1 = C(1) ĩ and yi2 = C(2) ĩ in arithmetic modulo p. For our very
simple example

yi1 =


d0(i)
d1(i)
d2(i)
d3(i)

 and yi2 =


d3(i)
d2(i)
d1(i)
d0(i)

 .

© Art Owen 2019 do not distribute or post electronically without author’s
permission

42 15. Quasi-Monte Carlo

Finally, the point xi = (xi1, xi2) is made from the digits in yi−1 via

xij =

m∑
k=1

y(i−1)jkp
−k (15.23)

where m = 4 in our example.
By construction, xij ∈ [0, 1) for i = 1, . . . , p4 and j = 1, 2. Now let’s check

that x1, . . . ,xp4 are a (0, 4, 2)-net in base p. Consider the elementary interval

E =

[
c1
pk1

,
c1 + 1

pk1

)
×
[
c2
pk2

,
c2 + 1

pk2

)
where kj > 0 with k1 + k2 = 4 and 0 6 cj < pkj . If every such E contains
exactly one of the xi, then the xi are a (0, 4, 2)-net in base p.

We need to solve for i such that xi ∈ E. If such i exists then we know
it satisfies c1 6 pk1xi1 < c1 + 1. That is c1 6

∑4
k=1 y(i−1)1kp

k1−k < c1 + 1.
Therefore

c1 =

k1∑
k=1

y(i−1)1kp
k1−k =

k1−1∑
k=0

y(i−1)1(k1−k)p
k.

In other words, the digits of c1 are dk(c1) = y(i−1)1(k1−k+1) for k = 0, . . . , k1−1.
Notice that the order of the digits is reversed.

We require that i satisfies y(i−1)1(k+1) = dk−k1(c1) for 0 6 k < k1. Tak-
ing account of the second dimension as well, the value i must also satisfy
y(i−1)2(k+1) = dk−k2(c2) for 0 6 k < k2.

For 0 6 i < p4, let yi;k1,k2 be made up of the first k1 elements of yi1 and
the first k2 elements of yi2. Then

yi;k1,k2 ≡
(
yi1,1:k1

yi2:1:k2

)
= Ck1,k2


d0(i)
d1(i)
d2(i)
d3(i)

 .

We find i by solving

yi;k1,k2 =



dk1−1(c1)
...

d0(c1)
dk2−1(c2)

...
d0(c2)


so that


d0(i)
d1(i)
d2(i)
d3(i)

 = C−1
k1,k2



dk1−1(c1)
...

d0(c1)
dk2−1(c2)

...
d0(c2)


© Art Owen 2019 do not distribute or post electronically without author’s

permission

15.11. Infinite variation 43

in arithmetic modulo p. The solution exists because Ck1,k2 is invertible. From

the digits we recover the integer i =
∑3
k=0 dk(i)pk. Now xi+1 ∈ E is the point

we needed to find, and we have shown that xi are a (0, 4, 2)-net in base p.
A general digital net construction in a prime base p starts with s > 1 matrices

C(1), . . . , C(s) ∈ {0, 1, . . . , p− 1}m×m for m > 1. Suppose that the matrix

Ck1,k2,...,ks =


C

(1)
1:k1

C
(2)
1:k2

...

C
(s)
1:ks


containing the first kj > 0 rows of C(j) always has rank at least m − t when∑s
j=1 kj = m. Then we may construct a (t,m, s)-net in base p as follows:

1) place the base p digits of i− 1 into the vector ĩ,

2) for j = 1, . . . , s, multiply yj = C(j) ĩ, in arithmetic modulo p, and,
3) for j = 1, . . . , s, form xij from digits of yj as in equation (15.23).

When t > 0, the m ×m matrices above have rank m − t < m. As a result
we expect a t-dimensional space of solutions. Working in integers mod p that
leads to pt solutions corresponding to the pt points that the (t,m, s)-net places
in a given elementary interval.

A (t,m, s)-net requires s matrices of size m by m and it generates bm points
with m digits each. A (t, s)-sequence uses s matrices with infinitely many rows
and columns both indexed from 1 to ∞. Only finitely many rows and columns
are needed in practice because n < ∞ and floating point representations use
only finitely many bits.

More information on these constructions, and especially on how to find suit-
able matrices may be found in the text by Dick and Pillichshammer (2010).
When the base b is a prime power, but not a prime number, then similar con-
structions are available, but they do not use arithmetic modulo b.

15.11 Infinite variation

The Koksma-Hlawka inequality (Theorem 15.5) does not help us when VHK(f) =
∞. It reduces to |µ̂ − µ| 6 ∞, which we already knew. We have VHK(f) =
∞ whenever |f | is unbounded, and that is a common occurence when f first
transforms x into one or more Gaussian variables. If f is unbounded, then there
exists a point x2m with |f(x2m)| large enough to make |µ̂− µ| > 1 for n = 2m.
Changing x2m this way for all m > 1 would not stop D∗n from converging to zero
but it would stop µ̂ from converging to µ. By contrast, unbounded integrands
are not a severe problem for plain Monte Carlo, so long as they are square
integrable.

In applications, it is common that |f | only diverges to∞ as x approaches the
boundary of [0, 1]d. Then QMC samples that approach the boundary, but not

© Art Owen 2019 do not distribute or post electronically without author’s
permission

44 15. Quasi-Monte Carlo

too quickly, can make µ̂ converge to µ. We will see in Chapter 17 that having
each xi ∼ U[0, 1]d induces about the right amount of singularity avoidance to
get convergence, and one does not have to know where the singularities are.

It is not just unbounded functions that have VHK(f) = ∞. The indicator

function of Td(θ) = {x ∈ [0, 1]d |
∑d
j=1 xj 6 θ} has infinite variation when d > 2

and 0 < θ < d. More generally, we typically find that VHK(1S) = ∞, for a set
S ⊂ [0, 1]d, unless the boundary of S is formed from hyperplanes parallel to the
coordinate axes of [0, 1]d. There are more details in the chapter end notes. If
S is well enough behaved that f(x) = 1S is Riemann integrable, then we know
that D∗n → 0 implies that µ̂→ µ as n→∞. Also, because both µ̂ and µ are in
[0, 1] we know that |µ̂−µ| 6 1, but Koksma-Hlawka does not refine this bound.

It is not just unbounded or discontinuous functions that have infinite varia-
tion. The function (1−

∑d
j=1 xj)+ = max(0, 1−

∑d
j=1 xj) has infinite variation

when d > 3. Functions of the form f(x) = max(g(x), h(x)) for two smooth
functions g and h commonly arise in finance where one has the option to choose
either outcome g or h. There is typically a cusp at points x where g(x) = h(x)
and this cusp leads to infinite variation when d > 3.

Infinite variation in f is still compatible with good results from QMC. Griebel
et al. (2010, 2013) give conditions where integrands f that have infinite varia-
tion due to cusps or even discontinuities can be dominated by low dimensional
ANOVA components that are smooth and of finite variation. The high dimen-
sional non-smooth components then have a small norm and QMC works well
despite the infinite variation of f .

The case where
∫
|f(x)|dx < VHK(f) =∞ has a parallel in ordinary Monte

Carlo when
∫
|f(x)|dx <

∫
f(x)2 dx =∞. In that case Monte Carlo estimates

satisfy µ̂n → µ as n → ∞ but the central limit theorem fails to give a usable
confidence interval. This trap is comparatively rare in Monte Carlo, though it
can be brought on by a poorly chosen importance sampling distribution. We
will see in Chapter 17 that RQMC methods will still asymptotically outperform
plain MC on integrands with finite variance even if VHK(f) =∞.

15.12 Higher order nets

Digital nets attain a quadrature error that is O(n−1+ε) for any ε > 0 as the
number n of points tends to infinity. This rate is achieved when the function f
has bounded variation in the sense of Hardy and Krause. A sufficient condition is
that the mixed partial derivative of f taken once with respect to all components
of x be continuous on [0, 1]d.

When the integrand f is even smoother, with continuous mixed partial
derivatives of order two (or more) with respect to each component, digital nets
still only attain the rate O(n−1+ε). Higher order nets described here are able
to attain better convergence rates for smoother integrands.

We begin with the interleaving function. Suppose that x = 0.x1x2x3 . . . and
y = 0.y1y2y3 . . . are two points in [0, 1), written in base b. For definiteness,
suppose that neither ends in an infinite sequence of the digit b − 1. The digit

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.13. Haar wavelets and Walsh functions 45

interleaving function yields the point

z = inter(x, y) = 0.x1y1x2y2x3y3 . . .

also in base b.
A higher order digital net is constructed from the variables of an ordinary

digital net via the interleaving function. For example, a second order net is
constructed by interleaving pairs of variables from an ordinary digital net:

zij = inter(xi,2j−1, xi,2j), 1 6 i 6 n, 1 6 j 6 d

where x1, . . . ,xn are a (t,m, s)-net in base b and s > 2d.
A second order net can attain the error rate O(n−2+ε) for integrands as

smooth as those described in Theorem 15.8 below for k = 2. Even better rates
can be attained by interleaving more than two variables from a digital net. For
yj = 0.yj1yj2yj3 . . . let

inter(y1, y2, . . . , yk) = 0. y11y21 . . . yk1︸ ︷︷ ︸
1st digits

y12y22 . . . yk2︸ ︷︷ ︸
2nd digits

y13y23 · · · .

A k’th order net has

zij = inter(xi,kj−k+1, · · · , xi,kj), 1 6 i 6 n, 1 6 j 6 d

where x1, . . . ,xn are points of a (t,m, s)-net in base b with s > kd.

Theorem 15.8. Let k > 1 be an integer. Let f be a function on [0, 1]d such
that any mixed partial derivatives of f taken up to k times with respect to each
component xj is square integrable. Let x1, . . . ,xn be a k’th order digital net.
Then ∣∣∣∣ 1n

n∑
i=1

f(xi)−
∫

[0,1]d
f(x) dx

∣∣∣∣ = O(n−k(log n)kd).

Proof. See Dick (2008, page 1120).

The larger k is, the better the asymptotic rate of convergence is. The im-
proved asymptote comes at a cost. To solve a d-dimensional problem with an
order k net requires an ordinary net in kd dimensions. For larger k we can
expect the asymptotic rate to take hold at larger n.

15.13 Haar wavelets and Walsh functions

Haar wavelets and Walsh functions provide some insight into how digital nets
can improve on Monte Carlo. This section looks at the case b = 2. There
are generalizations to integers b > 2. Those work similarly to the case b = 2
but are more complicated to present. This section presents an intuitive sketch.
For details of wavelets, see Owen (1997a). For Walsh functions, see Dick and
Pillichshammer (2010, Appendix A).

© Art Owen 2019 do not distribute or post electronically without author’s
permission

46 15. Quasi-Monte Carlo

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

m = 0, k = 0

u

ha
ar

w
av

(u
, m

, k
)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
5

1.
5

m = 1, k = 0

u
ha

ar
w

av
(u

, m
, k

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
5

1.
5

m = 1, k = 1

u

ha
ar

w
av

(u
, m

, k
)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

m = 2, k = 1

ha
ar

w
av

(u
, m

, k
)

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

m = 3, k = 4
ha

ar
w

av
(u

, m
, k

)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

m = 4, k = 12

ha
ar

w
av

(u
, m

, k
)

Some Haar wavelets

Figure 15.18: This figure shows a selection of Haar wavelets ψm,k(x) on [0, 1).

The Haar analysis begins with a ‘mother wavelet’,

ψ(x) =


1, 0 6 x < 1/2

−1, 1/2 6 x < 1

0, else.

Haar wavelets take the form

ψm,k(x) = 2m/2ψ(2mx− k), 0 6 k < 2m, m > 0.

Figure 15.18 shows some Haar wavelets on [0, 1). The factor 2m makes the
nonzero part of the wavelet take place over an interval of width 2−m. Subtract-
ing k shifts the wavelet. They all integrate to 0 over the unit interval. The

external factor 2m/2 scales them so that
∫ 1

0
ψm,k(x)2 dx = 1. These wavelets

are orthogonal: if m 6= m′ or k 6= k′, then
∫ 1

0
ψm,k(x)ψm′,k′(x) dx = 0. We say

that wavelets with small m are coarse while those with large m are fine.

For d = 1, if
∫ 1

0
f(x)2 dx <∞, we may write

f(x) = µ+

∞∑
m=0

2m−1∑
k=0

βk,mψm,k(x), where

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.13. Haar wavelets and Walsh functions 47

βk,m =

∫ 1

0

ψm,k(x)f(x) dx.

Then for x1, . . . , xn ∈ [0, 1]

µ̂ =
1

n

n∑
i=1

f(xi) = µ+

∞∑
m=0

2m−1∑
k=0

βk,m
n

n∑
i=1

ψm,k(xi),

and so the quadrature error satisfies

|µ̂− µ| 6
∞∑
m=0

2m−1∑
k=0

|βk,m| ×
∣∣∣∣ 1n

n∑
i=1

ψm,k(xi)

∣∣∣∣. (15.24)

The wavelet ψm,k(x) is piecewise constant on intervals [`/2m+1, (`+1)/2m+1)
for 0 6 ` < 2m+1. If n = 2m+1+t for t > 0 and each of those intervals contains
2t of the xi, then (1/n)

∑n
i=1 ψm′,k(xi) = 0 holds for all 0 6 m′ 6 m and

0 6 k < 2m
′
. Sampling on a (t,m+ 1, 1)-net in base 2 would then leave us with

an error determined only by the fine contributions βk,m′ψm′,k(x) for m′ > m.
As the sample size increases through powers of 2, more and more of the Haar
wavelets are integrated without error.

Using the mean value theorem for integrals, we can get a rough idea of the
magnitude of βk,m for large m. If f is continuous, then

βk,m = 2m/2
∫ 1

0

ψ(2mx− k)f(x) dx

= 2m/2
∫ 2−m(k+1/2)

2−mk

f(x) dx− 2m/2
∫ 2−m(k+1)

2−m(k+1/2)

f(x) dx

= 2m/2(f(x1)− f(x2))2−m−1 = 2−m/2−1(f(x1)− f(x2)),

for some points x1 ∈ [2−mk, 2−m(k+1/2)] and x2 ∈ [2−m(k+1/2), 2−m(k+1)].
If f ′ is continuous on [0, 1], then f(x1)−f(x2) = f ′(x3)(x1−x2) for some point
x3 ∈ [x1, x2]. Then

|βk,m| 6 2−m/2−1|f ′(x3)||x1 − x2| 6 2−3m/2−1|f ′(x3)|,

and so the contribution from fine wavelets decays for smooth f .
For functions on [0, 1)d we form wavelets by taking products of the one

dimensional wavelets above. For nonempty u ⊂ {1, 2, . . . , d}, for vectors m ∈
N|u| and for vectors k with kj ∈ {0, 1, . . . , 2mj − 1}, we use the Haar wavelets

ψu,m,k(x) =
∏
j∈u

ψmj ,kj (xj).

The notation
∑
m|u below indicates that we sum only over the values of m that

are legal for the given u. Similarly for
∑
k|u,m. Then if

∫
[0,1)d

f(x)2 dx <∞,

f(x) = µ+
∑
u6=∅

∑
m|u

∑
k|u,k

βu,m,kψu,m,k(x), for

© Art Owen 2019 do not distribute or post electronically without author’s
permission

48 15. Quasi-Monte Carlo

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

k = 1

u

w
al

sh
(u

, k
)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

k = 2

u
w

al
sh

(u
, k

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

k = 3

u

w
al

sh
(u

, k
)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

k = 7

w
al

sh
(u

, k
)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

k = 14
w

al
sh

(u
, k

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

k = 31

w
al

sh
(u

, k
)

Some Walsh functions

Figure 15.19: This figure shows a selection of Walsh functions walk(x) on [0, 1).

βu,m,k =

∫
[0,1)d

ψu,m,k(x)f(x) dx.

Digital nets in base 2 correctly integrate ψu,m,k for the ‘coarse’ wavelets with
a small value for

∑
j∈umj . The fine wavelets tend to have small coefficients

βu,m,k when f is smooth.
A very similar understanding of digital nets can be obtained via Walsh func-

tions. For an integer k > 0, we can write k = κ0 + 2κ1 + 4κ2 + · · · + 2mκm
where each κj ∈ {0, 1}, for some finite m depending on k. We let m(k) de-
note the smallest m for which this can be done. Now for x ∈ [0, 1) write
x = ξ1/2 + ξ2/4 + ξ3/8 + . . . , taking care to choose an expansion that does not
end in an infinite tail of 1s. For instance x = 1/4 is represented by 0.01000 · · ·
not 0.001111 · · · in base 2.

Using these expansions of x ∈ [0, 1) and k > 0, the k’th Walsh function is

walk(x) = (−1)κ0ξ1+κ1ξ2+κ2ξ3+···+κm(k)ξm(k)+1 .

The Walsh functions only take values ±1. They are constant in elementary
intervals of width 2−m(k)−1. Figure 15.19 shows some Walsh functions.

Each Haar wavelet can be written as a linear combination of Walsh functions
and vice versa. Like Haar wavelets, Walsh functions include coarse ones over

© Art Owen 2019 do not distribute or post electronically without author’s
permission

15.14. Kronecker sequences 49

wide intervals (for small k) and fine ones over narrow intervals (for larger k).
Walsh functions are not localized in space like the Haar wavelets. The Walsh
functions are orthogonal to each other.

The multivariable version of Walsh functions is slightly easier to write than
the one for Haar wavelets because the above development of Walsh functions
includes the constant function via wal0(x) = 1, and because we have not used
two parameters, one for m(k) and one for k given m(k). For a vector k ∈ Nd
and a point x ∈ [0, 1)d, we may define

walk(x) =

d∏
j=1

walkj (xj).

Similarly to Haar wavelets, we expand square integrable f as

f(x) =
∑
k∈Nd

γkwalk(x), where γk =

∫
[0,1)d

walk(x)f(x) dx.

For smooth f , the coefficients γk tend to decay as the components of k
increase, but not in precisely the same way that Haar wavelet coefficients βu,m,k

do. Dick (2009) shows that for a smooth function f on [0, 1), the vast majority of
coefficients γk for a given value of m(k), must decrease rapidly as m(k) increases.
Any exceptions are for those k that have only one 1 in their binary expansion.

15.14 Kronecker sequences

The term quasi-Monte Carlo is due to Richtmyer (1952). The points he used
are sometimes called Richtmyer sequences and are perhaps better known as
Kronecker sequences. They are included primarily for their historical interest.
We begin with the Weyl criterion: x1, x2, · · · ∈ [0, 1) are uniformly distributed
if and only if

lim
n→∞

1

n

n∑
i=1

e2π
√
−1`xi = 0 (15.25)

for all integers ` 6= 0. There is a d-dimensional version where non-zero integers `
are generalized to vectors ` ∈ Zd\{0} and `xi generalizes to `Txi for xi ∈ [0, 1)d

(Kuipers and Niederreiter, 1974, page 48).
Now let xi = {αi} ≡ αi−bαic for some α > 0. This is the fractional part of

αi also called its remainder modulo 1 and should not be confused with the set
containing αi. If α is a rational number, then the values xi will eventually start
repeating in a cycle. If instead, α is irrational then xi are uniformly distributed
as can be shown by applying the Weyl criterion. Popular choices for α are
square roots of prime numbers.

For d > 1, we can use xi = ({iα1}, {iα2}, . . . , {iαd}) for distinct irrational
numbers αj . It would not work to have α1 =

√
2 and α2 = 2

√
2/3. Then xi1

© Art Owen 2019 do not distribute or post electronically without author’s
permission

50 15. Quasi-Monte Carlo

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x2 versus x1

n = 500

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x2 versus x1

n = 1000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x2 versus x1

n = 1500

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x2 versus x1

n = 2000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x9 versus x6

n = 500

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x9 versus x6

n = 1000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x9 versus x6

n = 1500

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x9 versus x6

n = 2000

Kronecker points

Figure 15.20: The top row plots xi2 = {i
√

3} versus xi1 = {i
√

2} for n =
500, 1000, 1500, 2000. The bottom row plots xi9 = {i

√
23} versus xi6 = {i

√
13}

for the same value of n.

and xi2 would each be uniformly distributed in [0, 1) but (xi1, xi2) would fail to
be uniformly distributed in [0, 1)2. We need αj where

a0 +

d∑
j=1

ajαj = 0

does not hold for any rational numbers a0, . . . , ad. Then 1 and α1, . . . , αd are
said to be linearly independent over the rational numbers.

Theorem 15.9. If 1 and α1, . . . , αd are linearly independent over the rational
numbers and xi = ({iα1}, {iα2}, . . . , {iαd}), then xi for i > 1 are uniformly
distributed over [0, 1)d.

Proof. Kuipers and Niederreiter (1974, Chapter 6).

Figure 15.20 show some two dimensional projections of Kronecker points.
The bottom row has xi9 versus xi6, which looks to be one of the worst pair
plots among the first 10 dimensions. As n increases, the diagonal stripes there
become wider and eventually fill in the plane. As n continues to increase, some
diagonal stripes get about double the sampling intensity of the rest of the figure

© Art Owen 2019 do not distribute or post electronically without author’s
permission

End Notes 51

and those double wide stripes grow slowly to cover the square, before a small
triple wide stripe appears.

The discrepancy bounds for Kronecker sequences involve somewhat higher
powers of log(n) than for the digital sequences in this chapter. It is also hard
to make a good choice of αj when d > 1. See Niederreiter (1992b) for both of
these points. The most widely used choices are αj =

√
pj where pj is the j’th

largest prime number but as we see in Figure 15.20, even some two dimensional
projections look bad. Like Halton sequences, Kronecker sequences do not seem
to have any especially good values of n.

Kronecker sequences resemble lattice rules of Chapter 16 except that they
are extensible instead of being periodic. These sequences have been criticized
because their theoretical properties depend on irrationality of αj and in floating
point computations rational approximations to αj must be used. Some authors,
for example Vandewoestyne (2008), report good results from the Richtmyer
sequence despite this concern.

The year of Richtmyer’s technical report is variously given as 1951 or 1952.
It was written in October 1951 but published in April 1952. Richtmyer also
refers to the effective number of dimensions in an integrand, in what we would
now call the truncation sense. That is, a notion of effective dimension appears
already in the first QMC paper. Richtmyer (1952) finds theoretical superiority
for his quasi-Monte Carlo points but concludes that there is no practical superi-
ority. His example functions were of high, in fact indefinite dimension and were
discontinuous. The function f implicit in his computation had infinite variation.
Richtmyer’s technical report was not optimistic about the performance of QMC.
The poor performance he saw could have been due to a lack of smoothness in
his integrands or to the poor finite sample equidistribution of the Kronecker
points.

Chapter end notes

Dick et al. (2013) present QMC using methods from reproducing kernel Hilbert
spaces. They pay special attention to the weighted spaces of §7.7.

Acceptance-rejection

Suppose that acceptance-rejection is used to generate one or more of the compo-
nents of a random vector in Rd. We use some number of uniform random vari-
ables to generate the proposal and one or more others to make the acceptance-
rejection decision or decisions. Doing this we use a point in [0, 1]s where gener-
ally s > d to sample xi. If the i’th point in [0, 1]s is rejected then we ignore it
and only evaluate f on the accepted points. There is a set A ⊂ [0, 1]s for which
x ∈ A implies acceptance. Let f subsume the transformations from [0, 1]s to
proposed points and the ultimate integrand applied to an accepted proposals.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

52 15. Quasi-Monte Carlo

Then, using QMC this way estimates µ =
∫
A
f(x) dx by

µ̂ =
1

n

n∑
i=1

1xi∈Af(xi)
/ 1

n

n∑
i=1

1xi∈A,

for low discrepancy points xi. That is, we have a ratio estimate with a numerator
estimaing

∫
1x∈Af(x) dx and a denominator estimating

∫
1x∈A dx. When A

has an arbitrary boundary that is not a box parellel to coordinate axes, then the
numerator and denominator integrands ordinarily have infinite variation in the
sense of Hardy and Krause, as discussed below. QMC sampling will converge
to the right answer if both 1A(x) and f(x)1A(x) are Riemann integrable. Zhu
and Dick (2014) study this process and find empirical evidence that it has better
than O(n−1/2) errors despite the infinite variation.

Another approach is to make the first r > 1 proposals and decisions based
on a point in [0, 1]s for some s. If that ends in a rejection, carry on from
there using pseudo-random numbers to propose and accept or reject until an
acceptance occurs. The result is a hybrid of MC and QMC. The hybrid might
still be better than plain MC, but the Koksma-Hlawka theorem would not be
applicable to it because the dimension is not bounded.

Discrepancy

Discrepancy as a branch of mathematics is older than quasi-Monte Carlo. It is
sometimes called ‘irregularities of distribution’. It goes back at least to Weyl
(1914, 1916) and the Weyl criterion (15.25). There are texts by Beck and
Chen (1987), Matoušek (1999) and Chazelle (2000). The latter emphasizes
applications to theoretical computer science. Many authors use n × D∗n, an
integer count, instead of D∗n. We call those ‘integer discrepancies’ below. One
of the first problems was to show that this integer discrepancy could not remain
bounded as n→∞.

Integer discrepancies taken over sets other than axis-parallel boxes generally
cannot be made as small as log(n)d−1. Lower bounds worse than that are known
for circular disks in [0, 1]d, axis parallel triangles in [0, 1]2, rotated d-dimensional
boxes and many more geometrical quantities. See Alexander et al. (2018) for
results and references. Axis-parallel boxes are much easier to sample uniformly
than those other sets. Fortunately, low discrepancy over axis-parallel boxes is
already sufficient to provide good numerical integration for functions of bounded
variation.

Doerr et al. (2014) give a comprehensive survey of methods to compute
L2 and star discrepancies. The L2 discrepancy formula (15.7) of Warnock
(1972) requires O(dn2) computation, if performed as written. Heinrich (1996)
presents an algorithm to compute it in O(n log(n)d) work as n→∞ for fixed d.
There is more interest in computing the star discrepancy, which is much harder.
Gnewuch et al. (2009) report that all known algorithms are exponential in d.
They show that the problem is NP-hard when n = d and both go to infinity.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

End Notes 53

Doerr et al. (2014) describe some algorithms that approach O(nd/2) cost as well
as some faster algorithms that approximate the star discrepancy.

Hickernell (1998) points out some connections between discrepancy measures
and goodness of fit tests in statistics.

Nets

The first digital nets were the Sobol’ sequences (Sobol’, 1967). The next major
family of nets were the Faure sequences (Faure, 1982). Niederreiter (1987)
merged Faure’s and Sobol’s concepts to produce the definitions of digital nets
and sequences used here. He also created additional constructions, including a
generalization of Faure’s (0, s)-sequences to prime power bases q = pr > s. The
best available t parameters are for the NX nets of Niederreiter and Xing (1996).
The minT project (Schürer and Schmid, 2009) maintains an online reference to
net constructions. Higher order nets are due to Dick (2008).

The value of t in a digital net can be strictly less than the value of t in a
digital sequence of which the net is the first bm points. The attained t value of
digital nets extracted from digital sequences has been studied by Schmid (1999,
2001).

The projections shown in Figure 15.11 were found using the projection pur-
suit option in Ggobi (Swayne et al., 2003). Projection pursuit is a numerical
optimization designed to find projections of data that are highly structured.
There are several ways to measure the strength of structure. Of these, the cen-
tral mass option seemed most useful at finding bad projections of QMC points.

Although nets have been presented as an improvement on Halton sequences,
there is still interest in generalized Halton sequences employing permutations
to break up the striping artifacts. Vandewoestyne and Cools (2006) compare
permutations via the resulting mean squared discrepancy and find good results
for a ‘reversed Halton’ scramble that permutes 0, 1, . . . , b − 1 via πb = (0, b −
1, b− 2, . . . , 2, 1). Faure and Lemieux (2009) study several proposals and make
their own. See also Chi et al. (2005). Random scrambles of Halton points are
considered in §17.10.

QMC versus MC

An interesting point of view, advanced by Zaremba (1968), is that Theorem 15.3
is the real reason that Monte Carlo sampling works. By that line of reasoning,
it does not matter that we tried to get independent U[0, 1]d points. All that
matters for µ̂ is which points x1, . . . ,xn we actually got. At the time Zaremba
wrote, random number generators were not as well tested as they are now, and
he remarked that the only really worthwhile tests should be for properties like
discrepancy that affect the accuracy. By now random number generators are
much more thoroughly tested, theoretically and empirically, and many of those
tests refer to properties like discrepancy. The tests however verify that the
discrepancies behave as predicted under randomness. Zaremba would have pre-
ferred discrepancies far smaller than under genuine randomness. The random-

© Art Owen 2019 do not distribute or post electronically without author’s
permission

54 15. Quasi-Monte Carlo

ness in Monte Carlo does serve a very practical purpose in letting us quantify
the uncertainty in our estimates.

Total variation

When f is a continuously differentiable function on [0, 1] then it has total varia-

tion V (f) =
∫ 1

0
|f ′(x)|dx. Variation sounds like variance, and the concepts are

similar, but with important differences. For a constant c, V (cf) = |c|V (f) while
Var(cf) = c2Var(f) so it is more reasonable to compare V (f) to the standard
deviation

√
Var(f). When f ′ is continuous on [0, 1]

V (f) =

∫
(0,1)

lim
ε↓0

1

ε

∣∣f(x+ ε)− f(x)
∣∣dx,

while the standard deviation can be written

√
Var(f) =

[
1

2

∫ 1

0

∫ 1

0

(
f(x)− f(x̃)

)2
dx dx̃

]1/2

.

Variation is based on local differences (closer than ε) while variance is based on
global differences x− x̃ ∈ [−1, 1].

We need to define the total variation for functions that are not necessarily
continuously differentiable or even differentiable at all. Let Xn = {x ∈ [0, 1]n |
0 < x1 < x2 < · · · < xn = 1} and by convention take x0 = 0. The total
variation of a function on [0, 1] is

V (f) = sup
n>1

sup
x∈Xn

n∑
i=1

|f(xi)− f(xi−1)|. (15.26)

When f ′ is continuous on [0, 1], then V (f) =
∫ 1

0
|f ′(x)|dx. For the nondiffer-

entiable function f(x) = 1x>1/2 the total variation (15.26) is easily seen to be
1. The supremum in (15.26) can be infinite. For example V (f) = ∞ for the
function f with f(x) = 1/x for x > 0 and f(0) = 0. A standard bounded
function of infinite variation is f(x) = sin(1/x) for x > 0 and f(0) = 0.

There are numerous generalizations of total variation to functions on [0, 1]d

for d > 1. Clarkson and Adams (1933) consider 6 of them and Adams and
Clarkson (1934) include two more. In quasi-Monte Carlo, we use total variation
in the sense of Hardy and Krause. That in turn is based on total variation in
Vitali’s sense.

Here is a brief synopsis of total variation for QMC that avoids some cumber-
some d-dimensional notation. The full details are in Owen (2005). Vitali’s vari-
ation Vit(f) is a d-dimensional version of (15.26). The list of points xi ∈ [0, 1]
is generalized to a d-dimensional grid within [0, 1]d. In each d-dimensional
cell of that grid, the difference f(xi) − f(xi−1) is replaced by an alternat-
ing sum. For d = 2, the alternating sum is a difference of differences like
f(a1, a2)−f(a1, b2)−f(b1, a2) +f(b1, b2). For general d > 1 it is a d-fold differ-
ence of differences. Vitali’s variation is the supremum over d-dimensional grids

© Art Owen 2019 do not distribute or post electronically without author’s
permission

End Notes 55

in [0, 1]d of the sum over grid cells of the absolute values of the alternating sums.
If f1:d(x) = ∂df(x)/∂x exists, then

∫
|f1:d(x)|dx > Vit(f) with equality when

f1:d is continuous on [0, 1]d (Fréchet, 1910).
Vitali’s variation is unsuitable for QMC because Vit(f) = 0 if f does not

depend on one of its components. For example, f(x) = sin(1/x2)1x2>0 does
not depend on x1 and so it has Vit(f) = 0.

To get a suitable definition of variation, we begin by specifying an anchor
point c ∈ [0, 1]d. Next, for every u ⊆ {1, . . . , d}, let xu:c−u be the point
y ∈ [0, 1]d with yj = xj for j ∈ u and yj = cj for j 6∈ u. Now define the function
fc,u on [0, 1]|u| through fc,u(xu) = f(xu:c−u). This function is not the same as
the ANOVA component fu. The total variation of f in the sense of Hardy and
Krause with anchor c is

VHK,c(f) =
∑
u6=∅

Vit(fc,u). (15.27)

In the prior example, VHK,c(sin(1/x2)1x2>0) = ∞ for any c ∈ [0, 1]d. The
original and customary definition of VHK uses c = 1, the vector of d ones. That
is

VHK(f) = VHK,1(f), (15.28)

is the measure of variation used in the Koksma-Hlawka Theorem. Aistleitner
and Dick (2015) have found it useful to move the anchor to 0 when studying
discrepancies with respect to distributions other than U[0, 1]d.

Unbounded integrands

Theorem 15.3 ensures that µ̂ → µ when xi ∈ [0, 1]d are a low discrepancy
sequence and f is a Riemann integrable function on [0, 1]d. From the converse
Theorem 15.4, we see that if f is not Riemann integrable then low discrepancy
alone is not enough to ensure convergence. Unbounded functions on [0, 1]d are
not Riemann integrable.

The Riemann integral can be extended to some unbounded functions by
taking appropriate limits. For some unbounded functions f the integral µε =∫

[ε,1−ε]d f(x) dx will converge to µ as ε→ 0+. That limiting process cannot help

us if x1 = 0 and f(x1) = ∞. Random sampling handles singular integrands
well because if E(f(x)) exists then P(f(x) =∞) = 0.

For unbounded integrands, the uniformly distributed points must also avoid
the singularity to some extent. Sobol’ (1973a,b) shows that some of his se-
quences tend to avoid a region around the origin, and this helps when the
integrand has a known singularity at the origin. The Halton points, if started
with x1j = φpj (1) and not x1j = φpj (0) = 0 have a tendency to avoid the
origin (Owen, 2006a) and, to a lesser extent, every corner of [0, 1]d. Hartinger
et al. (2005) study corner avoidance properties of some generalized Niederreiter
sequences and Faure sequences. In these problems, there is a delicate interplay

© Art Owen 2019 do not distribute or post electronically without author’s
permission

56 15. Quasi-Monte Carlo

between the speed at which the points approach the origin and/or the bound-
ary of [0, 1]d and the rate at which the (integrable) function diverges near its
singularity; discrepancy alone is not sharp enough to give a sufficient condition
for convergence.

Polynomial lattice rules

Polynomial lattice rules (Niederreiter, 1992a) are a beautiful generalization of
ideas from lattice rules (see Chapter 16) but they produce digital nets instead
of such lattices. Their presentation requires methods beyond the prerequisites
for this book. The interested reader may see Dick and Pillichshammer (2010,
Chapter 10) for details. As with lattice rules, polynomial lattice rules require
a search process to pick parameters. Compared to Halton, Faure or Sobol’
nets that are more or less automatic, that choice is a burden. On the other
hand, having that choice allows one to select a digital net customized to a given
problem instance. See Nuyens (2013) and also Kuo and Nuyens (2016) who
customize polynomial lattice rules for problems involving partial differential
equations over random environments (Graham et al., 2015).

Exercises

15.1. This is based on an observation of Sobol’ who recommends increasing
sample sizes through a geometric progression, not an arithmetic one. Let µ̂n =
(1/n)

∑n
i=1 f(xi). Suppose that for some A < ∞ and ε > 0 and all integers

n > 1 we have |µ̂n − µ| 6 An−1−ε and |µ̂n+1 − µ| 6 A(n + 1)−1−ε. Using
these facts find an upper bound on |f(xn+1) − µ| strong enough to show that
limn→∞ |f(xn+1) − µ| = 0. The interpretation is that if we could really get
O(n−1−ε) error for every sample size n, then we really only need to use one
sample point xn for a very large n.

15.2. The left endpoint rule is xi = (i − 1)/n for i = 1, . . . , n. Find D∗n and
Dn for this rule. For n > 1, does the rule with 3n points extend the rule with
n points? Is there a smaller rule that extends the left endpoint rule of size n?

15.3. This exercise assumes that you have already solved Exercise 15.2.

The Hammersley sequence of length n > 1 in dimension d > 2 combines
a left endpoint rule for the first component, with a d − 1-dimensional Halton
sequence for the other components. The Halton sequence is extensible. The left
endpoint sequence can be extended too, not from sample size n to n + 1, but
along a rapidly growing sequence of values n. Having extensible parts does not
necessarily make the Hammersley sequence extensible!

For this exercise: devise a method that extends the Hammersley sequence
in [0, 1]3 by combining an extensible left endpoint rule for the first component
with the extensible Halton sequence for the second and third components. Using
graphical investigations, find a flaw with this construction.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

Exercises 57

Note: It is not known whether this attempt to produce an extensible Ham-
mersley sequence yields a low discrepancy sequence. It has visually apparent
flaws in two dimensional projections that may or may not make it fail to be
uniformly distributed. The Halton sequence should be used instead of the Ham-
mersley when extensibility is required.

15.4. The function log(n)d−1/n over 2 6 n < ∞ first increases and then de-
creases as n→∞ for fixed d > 2. At what value of n does it start decreasing?
Non-integer answers are ok.

15.5. The QMC bound is predicted to stay below the root mean squared error
when C log(n)d−1/n < n−1/2 holds for all n > N , for some C > 0.

a) For what n does that happen when C = 1?

b) For what n does that happen when C = 10−6?

c) For what n does that happen when C = 106?

Here C is the total variation of the integrand in the sense of Hardy and Krause,
multiplied by the implied constant in the discrepancy bound. This is a ‘predic-
tion’ in the sense that the discrepancy is only asymptotically of the given form
and the integrand is not necessarily worst case.

15.6. By using Warnock’s formula (15.7), find E((D∗n,2)2) when xi are sampled

values of xi ∼ U(0, 1)d.

15.7. Let xi = φ3(i) be the i’th point of the van der Corput sequence in base
b = 3. Let D∗n,3 be the star discrepancy of x1, . . . , xn for 1 6 n 6 6561 = 38.
Over this range, is D∗n,3 ever below D∗m(n),3 where m(n) is the greatest power
of 3 that is not larger than n?

15.8. The Faure scrambled Halton sequence is known (Ökten et al., 2009) to
produce some bad projections in higher dimensions.

a) Plot the points (φ1031(i− 1), φ1033(i− 1)) for 1 6 i 6 500.

b) Repeat the plot, this time using Faure’s scramble of the Halton sequence,
as described at and just below Equation (15.17).

c) Repeat the two previous plots for n = 1000 and n = 10,000. Do either of
them look satisfactory?

d) Replace the Faure permutations by permutations chosen at random, sub-
ject to the constraint that π(0) = 0. Plot the first 1000 randomly scram-
bled points. Compare 5 such randomly scrambled images to the Faure
scrambled points.

e) Repeat the previous exercise, but this time do not force π(0) = 0.

15.9. The wing weight function appears to be increasing in all of its inputs
except Λ. That one varies over a small range, so maybe it is not important.
Cumulative means of van der Corput points used in the Halton sequence tend
to approach 0.5 from below. Figure 15.21 shows the first 1000 dimensions.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

58 15. Quasi-Monte Carlo

0 200 400 600 800 1000

0.
42

0.
44

0.
46

0.
48

0.
50

j'th dimension

va
n

de
r

C
or

pu
t m

ea
n

Average of first 10000 van der Corput points

Figure 15.21: The vertical axis is the average of the first 10,000 of a van der
Corput sequence in base pj , where pj is the j’th prime. The horizontal axis is
j = 1, . . . , 1000. See Exercise 15.9.

The bias is present but smaller in the first 10 dimensions that the wing weight
function uses.

These two observations suggest that antithetic sampling of the Halton points
might be an improvement. Evaluate the wing weight function on the first n =
5000 points of the Halton sequence. Repeat on antithetic pairs x̃i = 1 − xi,
componentwise for i = 1, . . . , n. Make a plot comparing the cumulative mean
wing weight under antithetic sampling of the Halton sequence to cumulative
mean wing weight without antithetic sampling. Take care to have the same
number of evaluation points in the horizontal axis for both methods.

15.10. A (0, 5, 7)-net in base 7 has n = 75 points. How many distinct elemen-
tary intervals of volume 7−5 does it balance?

15.11. The Halton sequence was left out of the comparison for the test func-
tion f2,25 of §15.9. It has some very bad projections in high dimensions, so
it might do worse than the Faure and Sobol’ sequences. Then again, the Hal-
ton sequence uses its most equidistributed components on the first and most
important variables of f2,25, and so it might do very well.

a) Apply the Halton sequence to the function f2,25 of §15.9 over the range
125 6 n 6 1.5×106. Determine how best to display its accuracy and then
compare it to the other methods. Is it superior, inferior, or comparable to

© Art Owen 2019 do not distribute or post electronically without author’s
permission

Exercises 59

those other methods? You can refer to the values displayed in Figure 15.17
without recomputing them.

b) Repeat part a) using Faure’s scrambling of the Halton sequence, as de-
scribed at and just below Equation (15.17). Also comment on whether
the scrambling improves the Halton sequence for this function. If there is
a clearly quantifiable trend then measure it (as for example a typical ratio
of absolute errors).

c) Suppose that through bad luck or bad planning we had the variables in
reverse order of importance. That is we used instead

f̃2,d(x) =

d∏
j=1

(
1 +

√
3

j
(xd−j+1 − 1/2)

)
for d = 25. Make a graphical evaluation of the Faure sequence. Deter-
mine whether Faure’s scrambling improves it. For both methods compare
(graphically) how well they do on f̃2,d to how well they do on f2,d.

15.12. We have studied QMC on some test functions formed by products of
univariate functions. Here we investigate the effectiveness of antithetic sampling
on such product test functions.

a) Prove Proposition 15.3.

b) For the function f1 of §15.9 determine whether antithetic sampling is
better than Latin hypercube sampling.

c) Suppose now that
∫ 1

0
gj(x)gj(1 − x) dx = ρj ∈ [−1, 1]. What now is the

variance (15.22)?

15.13. It is possible that NX-nets and NX-sequences should be held in reserve
for the very hardest quadrature problems. Their extremely low t parameter
shows that for some dimensions d, no other known construction for (t,m, d)-
nets will be able to balance any genuinely d-dimensional elementary intervals
(as defined on page 25) without requiring a larger sample size n than the NX-
nets use.

This exercise is a project to verify whether NX sequences are superior for
very hard problems. To do so:

• write or obtain some code for Niederreiter-Xing sequences,
• construct some test functions that are smooth and fully d-dimensional in

that σ2 = σ2
{1,2,...,d} from the ANOVA decomposition of f ,

• compare the accuracy of Niederreiter-Xing quadrature to ordinary MC
and to some other QMC methods using your test functions.

This project requires you to use some judgment. You must select the range of
dimensions d, sample sizes n, test functions f , and the competing QMC method
or methods. You also have to decide how to present the results, and give an
interpretation of what you find. There is even an interesting issue in choosing
the base b. Most of the literature is for b = 2. Results of Kritzer (2006) suggest
that b = 3 may be better, just as Faure (1982) finds base 3 best for van der

© Art Owen 2019 do not distribute or post electronically without author’s
permission

60 15. Quasi-Monte Carlo

Corput sequences in general bases. It is impossible to make perfect choices for
these decisions. A proper writeup should however explain the choices made.

15.14. For n > 1 let x1, . . . , xn be fixed distinct points in (0, 1). Let f(x) = 1
if x = xi for one of these points and let f(x) = 0 otherwise. This seems like an
unfavorable integrand for the given set of integration points, but perhaps it is
not the worst case.

a) Find both µ =
∫ 1

0
f(x) dx and µ̂ = (1/n)

∑n
i=1 f(xi).

b) What is the total variation of f on the interval [0, 1]?

c) The function f is a worst case function if |µ̂ − µ| = D∗nV (f) holds. For
what point sets x1, . . . , xn, if any, does this happen?

d) [Harder] Suppose instead that have used a closed rule with x1 = 0 and
xn = 1. Repeat parts b and c.

15.15. Let f(x) =
∏d
j=1 x

Aj

j on [0, 1]d where Aj > 0. Similarly, let f̃(x) =∏d
j=1(1− xj)Aj on [0, 1]d.

a) Show that VHK(f) = 2d − 1.

b) Show that VHK(f̃) = 1.

15.16. Consider the function f(x) = 12d/2
∏d
j=1(xj − 1/2). Show that if x ∼

U(0, 1)d then f(x) has variance σ2 = 1 regardless of d. Show that VHK(f)
increases exponentially in d. For d = 10, find the smallest integer n0 such
that the bound on D∗n in (15.15) times VHK(f) is smaller than n−1/2 whenever
n > n0.

15.17. Show that the function

f(x) =

{
1, x2 6 x1

0, else

for x = (x1, x2) ∈ [0, 1]2, has infinite variation in the sense of Hardy and Krause.

15.18. Construct a function f on [0, 1]2 such that VHK(f) =∞ but VHK(f2) < ∞.

15.19. Construct a function f on [0, 1] that is discontinuous but for which fanti

has infinitely many continuous derivatives.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

16

Lattice rules

Lattice rules are a second major family of QMC methods. They have developed
in parallel with digital nets and sequences of Chapter 15. The points we use in a
lattice rule have the same geometric structure as the multiplicative congruential
random number generators that we saw in Chapter 3, just as algorithms for
digital nets are like shift register random number generators. In both cases,
QMC can be likened to finding a small random number generator and using all
of its points. Lattice rules are well suited to Fourier methods of analysis and
periodic integrands, but they work well more generally. The presentation in this
chapter follows the text by Sloan and Joe (1994) and Chapter 5 of Niederreiter
(1992b), and incorporates some more recent developments.

As in Chapter 16, we are going to create n points in the d-dimensional unit
cube. For lattice rules it is most convenient to use [0, 1)d for that cube, instead
of [0, 1]d, because periodic functions will play a critical role. As before, U[0, 1)d

random variables might first be transformed into some other distribution before
applying an integrand of interest. Letting f incorporate both our transfor-
mations and the integrand of interest, we will estimate µ =

∫
[0,1)d

f(x) dx by

(1/n)
∑n
i=1 f(xi) as before, using xi from the lattice rules described here.

16.1 Rank one lattices

Given a strategically chosen vector of integers z = (z1, . . . , zd) and a compatibly
chosen sample size n > 1, the rank-1 lattice rule has points xi ∈ [0, 1)d with
components

xij =
(i− 1)zj

n
mod 1 (16.1)

61

62 16. Lattice rules

for i = 1, . . . , n and j = 1, . . . , d. As usual, y mod 1 means y−byc and we adopt
a convenient shorthand {y} for this. The intent {y} = y mod 1 will always be
clearly distinct from the set containing y. These lattices have rank 1 because
they use only one vector z of integers. Lattices of rank-2 and higher using more
than one vector are described in the end notes. They are not commonly used
now.

We could replace equation (16.1) by xij = izj/n mod 1 for i = 1, . . . , n. We
would get the same set of points in a different order. It is however standard
to present lattice rules with x1 = (0, 0, . . . , 0) as in (16.1) instead of xn =
(0, 0, . . . , 0).

It is critically important to use all n points of a lattice rule. For instance,
using just the first n/2 points omits the whole region {x ∈ [0, 1)d | 1/2 < x1 <
1}. This requirement is not much of a problem, because can choose the sample
size n to fit within our computing budget.

It is clear at the outset that zj and n should not share a common factor k > 1.
If they did, then there would be at most n/k distinct values for {(i − 1)zj/n}.
Instead, choosing zj to have no common factor with n means that the values
x1j , . . . , xnj will take on all n values 0, 1/n, 2/n, . . . , (n− 1)/n. It is typical to
take z1 = 1, so that z = (1, z2, . . . , zd).

Using the points xi of a rank-1 lattice rule, we estimate µ =
∫

[0,1)d
f(x) dx

by

µ̂rlat =
1

n

n∑
i=1

f(xi) =
1

n

n−1∑
i=0

f

({
i

n
z

})
. (16.2)

That is, the indices of xi run from 1 to n but the argument of f uses i from 0
to n−1. Obviously, the difficult part will be to choose parameters n and z that
lead to a good rule. Figure 16.1 shows three small rank-1 lattices, one good
lattice, one not so good, and one clearly flawed because it leaves wide empty
diagonal gaps.

Before discussing how to choose z well, it is worth mentioning some special
cases. The Fibonacci lattices are especially good for d = 2, as described
in the end notes. The Fibonacci numbers are defined by F1 = F2 = 1 and
Fj = Fj−1 +Fj−2 for j > 3. A Fibonacci lattice has n = Fm and z = (1, Fm−1)
for m > 3. The illustrations in this section include many Fibonacci lattices.
Some other lattices with n = Fm but z2 other than Fm−1 are then used to
illustrate what can happen with a poorly chosen z. For d > 3, there is no such
singularly good choice.

A second special case of rank-1 lattices are the Korobov rules. These
have z = (1, a, a2 mod n, . . . , ad−1 mod n) for a carefully chosen integer a ∈
{2, 3, . . . , n − 1}. Having zj = aj−1 mod n means that given n, the search
for a good Korobov rule only requires a search for a, instead of a search for
z2, z3, . . . , zd. Furthermore, a choice for a can be used with more than one
dimension d, unlike a choice for (1, z2, . . . , zd). That means we do not have to
have a table of vectors z ∈ Zd indexed by n, with a separate table for each d.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

16.1. Rank one lattices 63

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

z = (1,41)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

z = (1,233)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

z = (1,253)

Some lattice rules for n=377

Figure 16.1: Each panel shows a lattice rule xi = ((i−1)z (mod n))/n in [0, 1)2

with n = 377 (a Fibonacci number) and z = (1, z2). The values of z2 are, from
left to right: 41, 233 and 253. The middle panel is a Fibonacci lattice. The
other panels show poor lattices, that one should avoid using.

The numbers aj mod 1 eventually repeat as j increases. The smallest j
for which this happens is j = φ(n) where φ is Euler’s totient function, the
number of integers i from 1 to n− 1 inclusive with gcd(i, n) = 1. We would not
use a Korobov rule with d > φ(n), because then we would find that xij = xi1
for all i = 1, . . . , n and j = φ(n). If n = pk is a large prime power then it can
be shown that φ(n) = pk−1(p− 1), which is also large.

Table 16.1 shows some examples of Korobov rules from L’Ecuyer and Lemieux
(2000). They searched for combinations of a and n that produced high quality
lattices. We will consider some quality criteria for lattices in 16.4. The quality
of a Korobov rule depends on the dimension d. The rules in Table 16.1 were

n a

1021 76
2039 1487
4093 1516
8191 5130

16381 4026
32749 14251
65521 8950

131071 28823

Table 16.1: This table shows the parameters of some Korobov rules listed in
Table 1 of L’Ecuyer and Lemieux (2000). For k = 10, . . . , 17, the largest prime
n < 2k is shown along with one of their recommended values a for z2.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

64 16. Lattice rules

0 5000 10000 15000

26
6

26
8

27
0

27
2

Mean wing weight
Points = Korobov Lines = Random

n

M
ea

n
w

ei
gh

t

● ● ● ● ●

Figure 16.2: The horizontal axis is the sample size n from 1000 to just over
16,000. The vertical axis is the average of the first n wing weight values. Solid
points show Korobov values. Ten dotted lines show cumulative Monte Carlo
estimates.

constructed using criteria that considered d ∈ {8, 12, 24, 32}. With the material
presented above it is already possible to implement lattice rules such as those
in Table 16.1 to see empirically how they behave.

16.2 Example: wing weight revisited

In §15.6 we compared Halton points to plain Monte Carlo on a wing weight
function in 10 dimensions. Here we make the same comparison using Korobov
points.

Figure 16.2 shows the results. We don’t connect the points between the
Korobov estimates because the sequences used there are not extensions of each
other. It seems pretty clear from the figure that the Korobov estimates are
better than the Monte Carlo ones. The value for n = 8191 is pretty close
to that for n = 16,381 and both look to be near the central value that the
Monte Carlo points produce. We cannot get a good estimate of the accuracy
of a lattice rule from the sample values. Chapter 17 presents randomized QMC
which makes it possible to estimate how much better, if any, the lattice rules
are than plain MC.

We can see numerical estimates of µ in Table 16.2. Because the values don’t

© Art Owen 2019 do not distribute or post electronically without author’s
permission

16.3. Lattices and lattice rules 65

n Korobov Halton

1021 268.0803 267.4654
2039 267.9789 267.5688
4093 268.0776 267.8209
8191 268.0763 267.9668

16381 268.0753 268.0193

Table 16.2: Sample size and estimates for the mean wing weight, using both
Korobov and Halton points at the given values of n. The Halton estimates are
from §15.6.

change much as one moves down the columnn, it appears that the estimates are
accurate. Table 16.2 also includes some estimates based on the Halton sequence
for these same sample sizes. Judging by eye, it appears that the Korobov
points are doing better than the Halton ones, for this function. As we noted in
Chapter 15, the Halton points tend to be below 0.5 on average and this function
seems to be increasing in most of its input variables. The Korobov rules have
mean 1/2− 1/(2n) in each coordinate. Perhaps this is better than the mean of
the Halton points. See Exercise 16.1.

16.3 Lattices and lattice rules

Before presenting the criteria that separate good from bad lattice rules, it is
useful to consider lattices in more generality.

Definition 16.1. A lattice is a nonempty set L ⊂ Rd for d > 1, with these
properties:

1) x,y ∈ L implies that x+ y ∈ L and x− y ∈ L, and,
2) there is an ε > 0 such ‖x− y‖ > ε for all x,y ∈ L with x 6= y.

The set of integer vectors Zd is a lattice. The set {0} is a lattice by a
convention, that we might prefer to call a technicality. It never has distinct
points x and y with ‖x−y‖ 6 ε because it has no pairs of distinct points at all.
Every other lattice has countably infinitely many points. The set of rational
vectors Qd is not a lattice because it fails the second clause.

Our lattice rules will always have a finite number of points. We arrange this
by intersecting a lattice with the unit cube, as illustrated in Figure 16.3 and
defined below.

Definition 16.2. An lattice rule in dimension d > 1 is a finite set of points
formed as L ∩ [0, 1)d where L is a lattice such that Zd ⊂ L.

Lattice rules are sometimes called integration lattices but that term is
potentially confusing, because these lattice rules are not lattices. They are just
the parts of a lattice that lie inside the unit cube [0, 1)d. They always have a

© Art Owen 2019 do not distribute or post electronically without author’s
permission

66 16. Lattice rules

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

An integration lattice

Figure 16.3: The plotted points are a subset of an infinite lattice in the plane.
The 13 solid points are a lattice rule, that is, the points of the lattice which
belong to [0, 1)2.

finite number of points. If they had infinitely many points in [0, 1)d, then some
pair of them would be closer than ε for any ε > 0 that we choose.

Definition 16.2 has an extra clause that L must include the integer lattice
Zd. That clause has several functions. First, it rules out some very unsuitable
lattices. For example, with d = 3 there are lattices that lie completely within
a plane, or even a line, such as {(i, i, i) | i ∈ Z}. Forcing L to contain Zd
makes L fully d dimensional. The second advantage of having L contain Zd is
that if we then shift the points of the lattice L by ∆ ∈ Rd, the shifted lattice
L + ∆ = {x + ∆ | x ∈ L} will place the same number of points in [0, 1)d as
L does. The lattice L = {(i/10, j/

√
5) | i, j ∈ Z} does not yield a lattice rule

when intersected with [0, 1)2, and shifting it can change the number of points
that intersect [0, 1)2. Finally, for ∆ ∈ Zd we find that L + ∆ is L shifted on
top of itself: L + ∆ = L. Equivalently, L looks the same in every integer cell
[a,a+ 1) for a ∈ Zd.

We can recover the lattice L of a given lattice rule by shifting the points
of that rule through all possible integer offsets. In Figure 16.3, that operation
would produce the open circle points from the solid ones. In the case of a rank-1
lattice defined by n and z = (1, z2, . . . , zd), any point in L can be written as a

© Art Owen 2019 do not distribute or post electronically without author’s
permission

16.4. Quality criteria for lattices 67

linear combination, with integer coefficients, of the rows of
1/n z2/n z3/n · · · zd/n
1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 ∈ R(d+1)×d. (16.3)

We would not expect to need d + 1 rows to span a d dimensional space. It
is easy to see that the second row of the matrix in (16.3) is an integer linear
combination of the other rows with coefficient n on the first row and −zj on
the j + 1’st row for j = 2, . . . , d. We can drop it and generate the lattice using
integer linear combinations of the remaining rows. The first row is also a linear
combination of the other rows, but it is not an integer linear combination of
those other rows, so we cannot drop it and still generate the lattice. After
dropping the second row, the lattice L may be written

L =

{
d∑
j=1

ajgj | a ∈ Zd
}

(16.4)

where the vectors gj are z and e2 through ed where ej has a 1 in the j’th
position and is zero elsewhere. Because of (16.4), we say that the vectors gj
generate L.

The matrix

A = A(L) =


1/n z2/n z3/n · · · zd/n
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


whose rows are the generating vectors gj is called a generator matrix of L. For
a nontrivial lattice in dimension d > 2 there is more than one possibility for its
generator matrix. The number of points in a lattice rule with generator matrix
A is |det(A)|−1. This is easy to verify for the matrix above. Geometrically it is
reasonable: if we take a large bounded cubical region R in Rd and map it via
AT to R̃ = {ATx ∈ Rd | x ∈ R} then the mapping has Jacobian AT and so

vol(R̃) = vol(R)|det(AT)| = vol(R)|det(A)|. As a result, the image R̃ should
have about 1/|det(A)| times as many integer lattice points in it as R has.

16.4 Quality criteria for lattices

For d = 1, the rank-1 lattice rule reduces to an equal weight rule with evaluation
points i/n for i = 0, . . . , n − 1. This is a left endpoint rule. For d > 1 all
the univariate projections of xi are left endpoint rules. Left endpoint rules

© Art Owen 2019 do not distribute or post electronically without author’s
permission

68 16. Lattice rules

typically have error O(1/n) while midpoint rules can attain error O(1/n2). See
Chapter 7. Things change for smooth periodic functions f with period 1. Then
a left endpoint rule is equivalent to a trapezoid rule with evaluation points i/n
for i = 0, . . . , n and relative weights 1/2, 1, 1, . . . , 1, 1/2. Trapezoid rules are very
accurate for smooth functions. If f ′′ is continuous on [0, 1], then the trapezoid
rule has error O(n−2) just like the midpoint rule.

A strategy for designing lattice rules is as follows. Because lattice rules are
extremely well suited to periodic functions, we will first suppose that f is a
periodic function on Rd, with period 1 as defined below. Then we develop an
upper bound for the error |µ̂rlat − µ| when we use a lattice rule to integrate a
periodic function. Next we select rank-1 lattices for which the error bound is
small. Of course a problem remains: we cannot count on the real world problem
we face to involve a periodic function f . Therefore we look for ways to make our
function periodic. That is, we replace f by a periodic function f̃ constructed so
that

∫
f̃(x) dx = µ =

∫
f(x) dx. Finally, we estimate µ by (1/n)

∑n
i=1 f̃(xi).

Definition 16.3. The function f : Rd → R is periodic (with period 1) if
f(x+ z) = f(x) for any x ∈ Rd and z ∈ Zd.

If f is periodic and xi are from a rank one lattice (16.1), then

µ̂rlat =
1

n

n−1∑
i=0

f
({ i

n
z
})

=
1

n

n−1∑
i=0

f
(i
n
z
)
.

We don’t have to reduce the argument of f modulo 1 because f is periodic.
We study lattice methods by expanding f into a d-dimensional Fourier se-

ries. Fourier series are commonly defined for functions on (−π, π]d or [0, 2π)d.
For QMC, it is more convenient to work with functions on [0, 1)d by scaling x.

For each vector of integers h ∈ Zd we define the function ψh(x) = e2π
√
−1hTx =

cos(2πhTx) +
√
−1 sin(2πhTx). These functions are periodic. They are or-

thonormal in that ∫
[0,1)d

ψh′(x)ψh(x) dx =

{
1, h = h′,

0, else.

Here ψh(x) is the complex conjugate of ψh(x), and ψh(x) = ψ−h(x).
The Fourier coefficients of f are defined to be

f̂(h) =

∫
[0,1)d

f(x)ψ−h(x) dx, h ∈ Zd, (16.5)

and the Fourier series for f is

f̃(x) =
∑
h∈Zd

f̂(h)ψh(x). (16.6)

We say that f̃ represents f . Our study of lattice rules would be simpler if
f(x) = f̃(x) always held, but reality is more complicated, as we discuss next.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

16.4. Quality criteria for lattices 69

If we were to change f at a finite number of points xk ∈ [0, 1)d, producing say

a function g, then none of the f̂(h) would change and hence f̃ would not change
either, yet f̃ could not then equal both f and g. We will say that functions
f and g on [0, 1)d are equal with probability one (abbreviated w.pr. 1) if
P(f(x) 6= g(x)) = 0 for x ∼ U[0, 1)d. If we did change f to g at a finite number
of points then we would have f = g with probability one.

As remarked above, if f and g are integrable functions that are equal with
probability one, then they have the same Fourier coefficients. Conversely, if f
and g are integrable functions that have the same Fourier coefficients, then they
are equal with probability one (Grafakos, 2004, Proposition 3.1.13). Next we
have a condition for such equality.

Theorem 16.1. Let f be an integrable function on [0, 1)d. If∑
h∈Zd

|f̂(h)| <∞, (16.7)

then f(x) = f̃(x) from (16.6) with probability one.

Proof. This is Proposition 3.1.14 of Grafakos (2004).

Condition (16.7) is that the Fourier coefficients of f are absolutely summable.
We will then say that f has an absolutely convergent Fourier series. By
Theorem 16.1, when f has an absolutely convergent Fourier series, it equals that
Fourier series with probability one. In that case, integrating f̃ will give us the
integral of f .

The sufficient conditions to get absolute convergence can be strict. One
sufficient condition described in the end notes involves even more smoothness
than having continuous partial derivatives of all orders up to d/2. Below we will
use some derivatives of order d or higher.

Some weaker smoothness conditions with a weaker connection between f
and f̃ are useful. For integers N > 0, define the truncated Fourier series

f̃N (x) =
∑

h∈Zd,|hj |6N

f̂(x)ψh(x).

The next theorem describes a mean square convergence property of square inte-
grable f . Theorem 17.2 for randomized lattice rules in Chapter 17 only requires
mean square integrability of f , not absolute converence of f̃ .

Theorem 16.2. Let f be a square integrable function on [0, 1)d. Then

lim
N→∞

f̃N (x) = f(x), w.pr. 1, and (16.8)

lim
N→∞

∫
[0,1)d

(f̃N (x)− f(x))2 dx = 0. (16.9)

Proof. This is Proposition 3.1.16, part 2, of Grafakos (2004).

© Art Owen 2019 do not distribute or post electronically without author’s
permission

70 16. Lattice rules

The ‘with probability one’ clause in (16.8) covers the possibility that for
some points x, the values f̃N (x) may fail to converge as N →∞. The set of x
where that happens has probability zero. When the sequence does converge, it
converges to f(x) (Grafakos, 2004, Proposition 3.1.15). We won’t always add
the “with probability one” clause, nor keep saying that f must be integrable.

Next, we develop lattice rules assuming that
∑
h∈Zd |f̂(h)| <∞ so that inte-

grating f̃ is the same as integrating f . Substituting the Fourier representation
of such an f into the rank-1 lattice rule, and reversing the order of summation,
we find that

µ̂rlat =
∑
h∈Zd

f̂(h)
1

n

n∑
i=1

ψh(xi). (16.10)

Proposition 16.1. Let x1, . . . ,xn ∈ [0, 1)d be a rank-1 lattice rule defined by
equation (16.1) using z ∈ Zd. Then

1

n

n∑
i=1

ψh(xi) =

{
1, hTz = 0 mod n

0, else.

Proof. Expanding the left hand side and using periodicity of ψh,

1

n

n∑
i=1

ψh(xi) =
1

n

n−1∑
i=0

ψh

(iz
n

)
=

1

n

n−1∑
i=0

exp
(

2π
√
−1

ihTz

n

)
=

1

n

n−1∑
i=0

ωi

where ω = exp(2π
√
−1hTz/n). If hTz = 0 mod n, then hTz/n ∈ Z so that

ω = 1, and the first case is proved. Now suppose that hTz 6= 0 mod n. Then
ω 6= 1 and so

1

n

n−1∑
i=0

ωi =
1− ωn

1− ω
= 0,

because then ωn = exp(2π
√
−1hTz) = 1, proving the second case.

From Proposition 16.1, we find that

µ̂rlat =
∑
h∈Zd

f̂(h)
1

n

n∑
i=1

ψh(xi) =
∑
h∈L⊥

f̂(h)

where

L⊥ = L⊥(z) = {h ∈ Zd | hTz = 0 mod n}. (16.11)

A similar expansion of µ when f̃ is absolutely convergent yields

µ =
∑
h∈Zd

f̂(h)

∫
[0,1)d

ψh(x) dx = f̂(0),

© Art Owen 2019 do not distribute or post electronically without author’s
permission

16.4. Quality criteria for lattices 71

because ψh integrates to 1 if h = 0 and integrates to 0 otherwise. As a result,
the error in the lattice rule is

µ̂rlat − µ =
∑
h∈L⊥∗

f̂(h) (16.12)

where

L⊥∗ = {h ∈ L⊥ | h 6= 0}. (16.13)

The set L⊥ is a lattice (Exercise 16.2). It is known as the dual lattice of
L. Its nonzero elements comprise the Fourier coefficients h for which the lattice
rule gets

∫
ψh(x) dx completely wrong. In the words of Sloan and Joe (1994,

page 32) “the dual lattice represents a graphic picture of failure”. The generator
matrix for the dual lattice L⊥ is (A(L)T)−1 where A(L) is the generator matrix
of L. Figure 16.4 depicts three small lattices with their corresponding dual
lattices.

A good lattice for f has a small value for the infinite sum in (16.12) of

Fourier coefficients f̂(h). A good latice overall has a small infinite sum for a
large collection of integrands f that we wish to handle.

A vector h that is far from the origin corresponds to a sinusoidal function
ψh(x) that oscillates very quickly. Suppose that f is smooth and nearly constant
over some rectangular box R ⊂ [0, 1)d. For large enough x the function ψh
is a rapidly oscillating sinusoid over R and then f(x)ψh(x) will have a near

zero integral over R. We would then expect |f̂(h)| to be small. The more

derivatives f has, the faster |f̂(h)| must decay. The Riemann-Lebesgue theorem

has |f̂(x)| → 0, without requiring f to be differentiable at all.

Theorem 16.3. Let f be integrable on [0, 1)d. Then |f̂(h)| → 0 as ‖h‖ → ∞.
If

∂q1+···+qdf

∂xq11 · · · ∂x
qd
d

(x)

exists and is integrable for any qj > 0 with
∑d
j=1 qj 6 α, then

|f̂(h)|(1 + ‖h‖α)→ 0

as ‖h‖ → 0.

Proof. The first part is the Riemann-Lebesgue theorem, Proposition 3.2.1 of
Grafakos (2004). The second part is from Theorem 3.2.9 of Grafakos (2004).

We see from Theorem 16.3 that the large errors will come from h close to
zero and so we should prefer a lattice L where the vectors in L⊥∗ are far from
the origin. For d = 1, the measure of large or small h is simply |h1|. For d > 2,
there is no unique way to order the nonzero vectors h. Lyness (1989) lists the
three most commonly studied measures

P (h) =

d∏
j=1

max(1, |hj |), S(h) =

d∑
j=1

|hj | and M(h) = max
16j6d

|hj |,

© Art Owen 2019 do not distribute or post electronically without author’s
permission

72 16. Lattice rules

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

n=144 z = (1,89)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

n=144 z = (1,5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

n=144 z = (1,131)

−30 −10 0 10 20 30

−
30

−
10

0
10

20
30

● ●
● ●

●
● ●

● ●
●

● ●
●

● ●
● ●

●
● ●

● ●
●

● ●
●

● ●
● ●

●
● ●

●
● ●

● ●
●

● ●
● ●

●
● ●

●
● ●

● ●
●

● ●
●

●
●

●
● ●

●
● ●

● ●
●

●
●

● ●
● ●

●
● ●

● ●
●

● ●
●

● ●
● ●

●
● ●

●
● ●

● ●
●

● ●
● ●

●
● ●

●
● ●

● ●
●

● ●
●

●
●

●
● ●

●
● ●

● ●
●

● ●
●

● ●
● ●

●
● ●

● ●
●

● ●
●

● ●
● ●

●
● ●

●
●

●
●

● ●

●

−30 −10 0 10 20 30

−
30

−
10

0
10

20
30

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

−30 −10 0 10 20 30
−

30
−

10
0

10
20

30
●

●
●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
●

●
●

●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

●
●

●
●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
●

●
●

●
● ●

● ●
● ●

● ●
●

● ●
● ●

●
●

●
●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
●

●
●

●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

●
●

●
●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
●

●
●

●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
●

●
●

●

Some lattice ruless

and their dual lattices

Figure 16.4: The top row shows lattice rules in the unit square with n = 144,
z1 = 1 and z2 equal to 89, 5, and 131 from left to right. The bottom row shows
the corresponding dual lattices with reference lines at multiples of 5. A good
lattice rule, like the one on the left, has few non-zero points near the origin in
its dual lattice.

which use |hj | within a product, sum and maximum, respectively. The measure
P is most commonly used. Lyness (1989) remarks that S may be a good choice
for extremely smooth (analytic) periodic functions and that M has little to
recommend it. The criterion P (h) can be written

P (h) =

d∏
j=1

h̄j , for h̄ = max(1, |h|).

Usage of P (h) may be justified by Zaremba’s theorem.

Theorem 16.4 (Zaremba’s Theorem). Let f be a periodic function on Rd and
let α > 1 be an integer. Suppose that

∂q1+···+qdf

∂xq11 · · · ∂x
qd
d

© Art Owen 2019 do not distribute or post electronically without author’s
permission

16.4. Quality criteria for lattices 73

exists and has bounded variation over [0, 1]d in the sense of Hardy and Krause

for any integers qj > 0 with
∑d
j=1 qj 6 α− 1. Then for some c > 0

|f̂(h)| 6 cP (h)−α. (16.14)

Niederreiter (1992b) states this theorem and also notes that we can replace

bounded variation whenever
∑d
j=1 qj 6 α − 1 by continuous differentiability

whenever
∑d
j=1 qj 6 α.

Definition 16.4. For c > 0 and α > 1, let Eα(c) be the set of periodic functions
f on Rd with period 1, according to Definition 16.3, for which (16.14) holds for
all h ∈ Zd.

Any f ∈ Eα(c) has an absolutely convergent Fourier series, and

|µ̂− µ| 6 c
∑
h∈L⊥∗

P (h)−α. (16.15)

A lattice that is good for c = 1 will be good for any c > 0 because µ, µ̂ and
f̂(h) all scale by a multiple of 1/c when f is replaced by f/c, so we focus now
on finding a good lattice for f ∈ Eα(1).

For the function

fα,n(x) =
∑
h∈Zd

e2π
√
−1hTx

(h̄1h̄2 · · · h̄d)α
, (16.16)

equality holds in (16.15) for c = 1. Thus fα,n is a worst case integrand from
Eα(1) and the worst error is then

Pα(z;n) ≡
∑
h∈L⊥∗

d∏
j=1

h̄−αj =
1

n

n−1∑
i=0

fα,n

({ iz
n

})
− 1. (16.17)

The second expression for Pα(z;n) is convenient because the definition of fα,n
sums over h over Zd instead of L⊥∗ . Now for a given n, we look for h ∈ Zd to
minimize

1 + Pα(z;n) =
1

n

n−1∑
i=0

∑
h∈Zd

e2π
√
−1hTzi/n

(h̄1h̄2 · · · h̄d)α

=
1

n

n−1∑
i=0

d∏
j=1

(
1 +

∑
h6=0

e2π
√
−1hzji/n

|h|α

)
. (16.18)

If α > 2 is an even integer, then the infinite sum in (16.18) can be written in
terms of certain Bernoulli polynomials bα of degree α. See Sloan and Joe (1994,
Appendix C). The case α = 2 is most frequently used. There

1 + P2(z;n) =
1

n

n−1∑
i=0

d∏
j=1

{
1 + 2π2(x2

ij − xij + 1/6)
}

© Art Owen 2019 do not distribute or post electronically without author’s
permission

74 16. Lattice rules

=
1

n

n−1∑
i=0

d∏
j=1

{
1 + 2π2

((izj
n

)2

− izj
n

+
1

6

)}
, (16.19)

where as before {y} = y−byc. Good values for z are then found by computerized
search. See §16.7.

16.5 Convergence rates

As α > 1 increases, lattice rules can achieve much better convergence rates for
f ∈ Eα(1). Here we summarize some of those results. Following Niederreiter
(1993), we consider z belonging to

Gd(n) = {z ∈ Zd | −n/2 < zj 6 n/2, 1 6 j 6 d}.

Theorem 16.5. For every d > 2 and n > 2 and α > 1, there exists z ∈ Gd(n)
with

Pα(z;n) 6 c(d, α)
log(n)α(d−1)+1

nα

(n

φ(n)

)(α−1)(d−1)(
1 +O

((log log n)b(d)

log n

))
where

c(d, α) = 2α(d−1)+1α
(α

(d− 1)!(α− 1)

)α−1

with b(2) = 3 and b(d) = d− 1 for d > 3, and φ(n) is Euler’s totient function.

Proof. This is Theorem 1 of Niederreiter (1993).

A lattice rule with −n/2 < zj < 0 gives the same points as one using zj + n
instead, because (i − 1)zj ≡ (i − 1)(zj + n) mod n. As a result, Theorem 16.5
also holds when Gg(n) is replaced by {z ∈ Zd | 0 6 zj < n}.

Theorem 16.5 shows that we can get error O(n−α+ε) for any ε > 0 from a
lattice rule if f ∈ Eα(c) for some c < ∞. The factor n/φ(n) = n/(n − 1) if n
is prime and 2k/φ(2k) = 2, so powers of 2 are also reasonable choices, though
they do introduce a factor 2(α−1)(d−1) that is not present for prime numbers.
The constant c(d, α) decreases rapidly with d. Niederreiter (1993, Theorem 2)
also shows that the usual practice of taking z1 = 1 does not greatly change the
bound.

Niederreiter (1992b) uses an alternative to Pα(z;n), that we can write as

Rα(z;n) =
∑

h∈L⊥∗ ∩(−n/2,n/2]d

d∏
j=1

h̄−αj . (16.20)

While Pα is only defined for α > 1, he makes use of R1(z;n) and notes that
Rα(z;n) 6 R1(z;n)α, for α > 1. For α > 1 and z ∈ Gd(n),

Rα(z;n) 6 Pα(z;n) 6 Rα(z;n) +O(n−α)

© Art Owen 2019 do not distribute or post electronically without author’s
permission

16.6. Periodizing transformations 75

holds. The upper bound is from Niederreiter (1993, Lemma 2). In a non-
asymptotic result (Niederreiter, 1992b, page 115), the average of R1(z;n) over
z ∈ Gd(n) is below (2 log(n) + 7/5)d for all d > 2 and all n > 2. Larcher (1987)
proves that R1(z;n) > cd(log n)d/n always holds for some cd > 0 when n > 2
and d > 2. It then follows that P1(z;n) cannot be o((log n)d/n).

For Korobov rules, the search space is smaller. For 0 6 a < n, let z(a) =
(1, a, a2 mod n, . . . , an−1 mod n) over a < n. If n is prime and d > 2, then the
average value of R1(z;n), for

1

n

n−1∑
a=0

R1(z(a);n) <
d− 1

n
(2 log(n) + 1)d,

by Niederreiter (1992b, Theorem 5.18). Of course, one would never use a = 0.
It is worth remembering that a better rate in n does not mean a better

method for practical sample sizes. First, the implied constant can increase
rapidly with smoothness α. Also, when the result is asymptotic, the accuracy
it presents might not be a good description of attained accuracy for feasible
sample sizes n.

We can bound the discrepancy of a rank-1 lattice rule.

Theorem 16.6. For z ∈ Zd for d > 2, and integer n > 2, let xi = {(i−1)z/n}
for i = 1, . . . , n. Then

Dn(x1, . . . ,xn) 6
d

n
+

1

2
R1(z;n),

where R1 is from (16.20) with α = 1.

Proof. This is from Theorem 5.6 of Niederreiter (1992b).

16.6 Periodizing transformations

Lattice rules are designed for smooth periodic integrands on Rd. Given a smooth
integrand f on [0, 1)d, the natural way to extend it to Rd is given in Defini-
tion 16.5 below, but the result isn’t necessarily smooth. Here we consider ways
to define an integrand f̃ satisfying∫

[0,1)d
f̃(x) dx =

∫
[0,1)d

f(x) dx

and for which the natural periodic extension of f̃ is smooth.

Definition 16.5. Given f : [0, 1)d → R the periodic extension of f to Rd is
f({x}) applied componentwise.

We begin with d = 1. Consider the function (x− 1/4)3 on [0, 1). This func-
tion is very smooth on that interval but its periodic extension has discontinuities

© Art Owen 2019 do not distribute or post electronically without author’s
permission

76 16. Lattice rules

at every x ∈ Z. The first panel of Figure 16.5 shows (x − 1/4)3 overlaid on a
portion of its periodic extension.

For a function f on [0, 1) to have a continuous periodic extension requires
that limx→1− f(x) = f(0) in addition to continuity for 0 < x < 1. It is con-
venient to refer to f(1) = f (0)(1), f ′(1) and f (r)(1) which mean, respectively,
f(1−) = limx→1− f(x), f ′(1−) = limx→1− f

′(x) and f (r)(1−) = limx→1− f
(r)(x).

With this understanding, for f to extend to a function with r continuous deriva-
tives the required boundary condition is f (j)(0) = f (j)(1) for 0 6 j 6 r. More
generally, when f is defined on [0, 1)d we treat any boundary point by taking
limits as necessary.

We consider several ways to replace f by a suitable f̃ for d = 1. They are
distinguished by how well they preserve smoothness of f and by how effective
they are in higher dimensions.

The function f̃(x) ≡ fE(x) = (f(x) + f(1− x))/2 extends to a one-periodic
function on R. This function was used in §8.2 on antithetic sampling. By
symmetry fE(0) = fE(1). The derivative of fE is f ′E(x) = (f ′(x)− f ′(1− x))/2.
For f ′E(x) to extend continuously, we need f ′(0) = f ′(1).

Antithetic periodization is awkward to extend to higher dimensions. The
function (f(x)+f(x̃))/2 with x̃ = 1−x taken componentwise is not necessarily
periodic (Exercise 16.3). The reflection method produces a d-dimensional
periodization of f by averaging 2d reflections of x. Letting g0(x) = x and
g1(x) = 1− x, we take

f̃refl(x) =
1

2d

1∑
j1=0

· · ·
1∑

jd=0

f
(
gj1(x1), gj2(x2), . . . , gjd(xd)

)
=

1

2d

∑
u⊆{1,...,d}

f(x̃u:x−u)

where x̃u:x−u is the point z with zj = 1 − xj for j ∈ u and zj = xj for j 6∈ u.

By symmetry,
∫
f̃refl(x) dx =

∫
f(x) dx. The obvious disadvantage of reflection

is that to compute f̃refl at one point requires 2d evaluations of f .

The reflection method does not yield a very smooth function. We saw this
already for d = 1 where frefl = fE. The second panel of Figure 16.5 shows the
reflection periodization of (x− 1/4)3.

A second way to periodize a function uses the baker transformation which
is defined in terms of the tent function

t(x) = min(2x, 1− 2x) = 1− 2|x− 1/2| =

{
2x, 0 6 x 6 1/2

2(1− x), 1/2 6 x 6 1.
(16.21)

The version using absolute value can be useful when writing software. The
absolute value function does the testing of x 6 1/2 for us, and we don’t then
need to put a conditional branch in our code. The tent function is also called
the hat function.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

16.6. Periodizing transformations 77

Definition 16.6. The d-dimensional baker transformation is a function B :
[0, 1]d → [0, 1]d with B(x) = x̃ where x̃j = t(xj) from (16.21), for j = 1, . . . , d.
For f : [0, 1]d → R, the baker periodization of f is

f̃baker(x) = f(B(x)). (16.22)

The name “baker” comes from the resemblance of this function to the folding
or kneading of bread dough, especially for d = 2. The function f̃baker(x) has
a continuous periodic extension. As x goes from 0 to 1, the value of t(x) goes

from 0 to 1 and then back to 0. Thus f̃baker(0) = f̃baker(1) = f(0).

The baker periodization satisfies
∫
f̃baker(x) dx =

∫
f(x) dx (Exercise 16.4).

We can compute f̃baker(x) with only one evaluation of f instead of the 2d re-

quired for f̃refl.
The third panel of Figure 16.5 shows the periodic extension of the baker

periodization of (x− 1/4)3. It clearly has cusps (first derivative discontinuities)

at 0 and 1. By the chain rule, f̃ ′baker(0) = 2f ′(0) and f̃ ′baker(1) = −2f ′(0) so that
we expect these cusps whenever f ′(0) 6= f ′(1). There is an additional cusp at

x = 1/2. This arises because f̃ ′baker(1/2−) = f ′(1) while f̃ ′baker(1/2+) = −f ′(1).

For d > 1 there are cusps in f̃baker at points x where xj = 0 or 1/2 or 1 for one
or more j ∈ {1, . . . , d}.

A third periodization method is to subtract certain polynomials from f in
order to get the desired number of smooth derivatives at integer values of the
periodization. For continuity of f̃ (i.e. the zeroth derivative) when d = 1 we
may use the linear periodization

f̃linear(x) = f(x)− (f(1)− f(0))(x− 1/2).

Clearly
∫ 1

0
f̃linear(x) dx =

∫ 1

0
f(x) dx because x − 1/2 integrates to 0. Also

f̃linear(0) = f̃linear(1) = (f(0) + f(1))/2. The fourth panel of Figure 16.5 shows
the periodic extension of the linear periodization of (x− 1/4)3.

The linear periodization can be extended to smooth functions on [0, 1). Sloan
and Joe (1994) describe

f̃Bern(x) = f(x)−
r∑
j=1

(
f (j−1)(1)− f (j−1)(0)

)
bj(x)

where bj are the Bernoulli polynomials, which they define in their Appendix C.
Unfortunately, higher dimensional generalizations of the Bernoulli periodization
method are awkward already for d = 2 and their complexity grows exponentially
in d. We do not consider them further.

Of the methods considered above, the baker transformation method is clearly
the best for large d. It does not give rise to smooth integrands. It is possible to
obtain smooth periodic integrands using a change of variable formula.

Let φ(x) be a differentiable increasing function from [0, 1] onto [0, 1]. Then∫ 1

0

f(x) dx =

∫ 1

0

f(φ(x))φ′(x) dx. (16.23)

© Art Owen 2019 do not distribute or post electronically without author’s
permission

78 16. Lattice rules

−0.2 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
1

0.
2

0.
3

0.
4

f(x) = ((x −− 1 4))3

−0.2 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
1

0.
2

0.
3

0.
4

Reflection periodization

−0.2 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
1

0.
2

0.
3

0.
4

Baker periodization

−0.2 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
1

0.
2

0.
3

0.
4

Linear periodization

Periodizations of ((x −− 1 4))3

Figure 16.5: The first panel shows f(x) = (x − 1/4)3 on [0, 1) with a portion
of its periodic extension. The next three panels show periodizations of f(x)
described in the text.

The function f̃(x) = f(φ(x))φ′(x) has f̃(0) = f̃(1) if φ′(0) = φ′(1) = 0. The
function φ is a cumulative distribution function and φ′ is the corresponding
probability density function.

The function φ must satisfy φ(0) = 0, φ(1) = 1, φ′(0) = 0 and φ′(1) = 0.
These four constraints can be satisfied by a cubic polynomial φ3(x) = a+ bx+
cx2 + dx3. Solving 

0
1
0
0

 =


1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3



a
b
c
d


we find that φ3(x) = 3x2−2x3, which upon inspection is increasing on [0, 1]. We

© Art Owen 2019 do not distribute or post electronically without author’s
permission

16.6. Periodizing transformations 79

recognize the derivative φ′3(x) = 6x(1−x) as the density function of a Beta(2, 2)
random variable. The resulting periodization method is

f̃Beta(2,2)(x) = f(φ3(x))φ′3(x).

The periodization f̃Beta(2,2) does not have a continuous derivative at x = 1.

Adding the further constraints φ′′(0) = φ′′(1) = 0 makes f̃ ′(0) = f̃ ′(1) = 0.
The quintic polynomial φ5(x) = x3(10 − 15x + 6x2) satisfies these constraints.
It has derivative φ′5(x) = 30x2(1− x)2, the Beta(3, 3) density. The periodizing
transformation

f̃Beta(3,3)(x) = f(φ5(x))φ′5(x)

is the first one we have considered whose periodic extension has a continuous
derivative when f does. It is illustrated for f(x) = (x − 1/4)3 in the second
panel of Figure 16.6. The Beta(k, k) density [x(1− x)]k−1(2k)!/(k!)2 has k − 1
vanishing derivatives at 0 and at 1.

More generally, we may obtain a periodization with k−1 derivatives vanish-
ing at integer values x by taking φ = φ2k−1 equal to the cumulative distribution
function of the Beta(k, k) distribution. Larger k are smoother but we will soon
see a drawback for large k.

Periodization by such transformations as this can be extended to d dimen-
sions without undue computational cost. In d dimensions we may use a mono-
tone change of variable periodization

f̃(x) = f(φ(x))

d∏
j=1

φ′(xj), (16.24)

where φ(x) is applied componentwise. If φ′(0) = φ′(1) = 0 then f̃(x) equals 0
on the boundary of [0, 1)d and has a continuous periodic extension. Choosing φ

with more vanishing derivatives makes f̃({x}) smoother.
Sloan and Joe (1994) advocate the transformation

φSidi(x) = x− sin(2πx)

2π

with φ′Sidi(x) = 1− cos(2πx) due to Sidi (1993). This choice of φ helps us find
a periodization of lattice rules that integrates constant functions without error.
To see why that is an issue, suppose that f(x) = c, a constant. Then f̃(x)

from (16.24) equals c ×
∏d
j=1 φ

′(xj) is not constant. When our rule integrates
constants correctly, and f1(x) +f2(x) = 1, then we will surely have µ̂1 + µ̂2 = 1
where µ̂j is the lattice rule estimate of µj =

∫
fj(x) dx. When f(x) = 1, then

f̃ for Sidi’s transformation becomes

d∏
j=1

(1− cos(2πxj)) =

d∏
j=1

(
1− 1

2

(
e
√
−1xj + e−

√
−1xj

))
© Art Owen 2019 do not distribute or post electronically without author’s

permission

80 16. Lattice rules

which expands into a sum of 3d sinusoids ψh(x), all with max16j6d |hj | 6
1. Unless the dual lattice of (16.1) has a nonzero h with all components in
{−1, 0, 1} the lattice rule will correctly integrate f(x) = 1.

For large d, the product
∏d
j=1 φ

′(xj) can cause difficulties. It typically in-

troduces a significant spike into f̃(x) near xc = (1/2, . . . , 1/2). For example

f̃(xc) = f(xc)φ
′(1/2)d. With φ′Beta(2,2)(1/2) = 1.5, φ′Beta(3,3)(1/2) = 1.875,

φ′Beta(4,4)(1/2) = 2.1875, and φ′Sidi(1/2) = 2, the spike can grow quickly with d.

When d is large, then f̃(x) will have a prominent spike near the center of
the cube, unless f(φ(x)) somehow vanishes there. When n is small, the entire
sample may miss the spike. A moderately large sample may hit the spike once
or a few times, with the result that the estimate µ̂ is dominated by those few
function evaluations. A very large sample is required so that the spike region is
properly covered.

We cannot solve the spike problem by choosing a function with φ′(1/2) 6 1.
The function φ′ has to have an average value of 1 in order that φ(0) = 0 and
φ(1) = 1. But φ′ must be close to zero near 0 and 1 to bring about periodicity

of f̃ . Therefore φ′ must be larger than 1 somewhere and the usual choices for
φ′ have a maximum at 1/2.

In §9.1, importance sampling was proposed as a means of handling inte-
grands with spikes in them. Suppose that we apply importance sampling to the
integrand in (16.24), sampling from the density

∏d
j=1 φ

′(xj). The result is to

replace f̃(x) by

f̃(φ−1(x))∏d
j=1 φ

′(xj)
= f(φ(φ−1(x)))

∏d
j=1 φ

′(xj)∏d
j=1 φ

′(xj)
= f(x). (16.25)

This importance sampling undoes the periodization transformation. Put an-
other way: the periodization that caused our problem is itself a kind of impor-
tance sampling.

The problem with spikes is not limited to transformations applied componen-
twise to x. Suppose that φ(x) transforms [0, 1]d to [0, 1]d and that we replace∫
f(x) dx by

∫
f(φ(x)) det(J(x)) dx where J is the Jacobian of φ. We can

make f̃(x) = f(φ(x)) det(J(x)) periodic by making det(J(x)) equal zero on
the boundary of [0, 1)d. It is clear that det(J(x)) must average to 1 over [0, 1)d.
To see this consider the function f with f(x) = 1. Now if |det(J(x))| 6 ε for
some 0 < ε < 1/2 whenever x 6∈ [ε, 1− ε]d then |det(J(x))| has to be very large
somewhere inside the tiny region (ε, 1− ε)d.

The method of choice for periodization of high dimensional functions re-
mains the baker transformation. For smaller d, a smooth monotone change of
variable transformation, such as Sidi’s, may be better. A strong advantage of
the baker transformation was discovered by Hickernell (2002). He shows that
the baker transformation can produce errors of O(n−2+ε) if f can be continu-
ously differentiated up to twice with respect to each component xj . This holds
even though f(B(·)) fails to be smooth at points x with any xj = 1/2. Lack of

© Art Owen 2019 do not distribute or post electronically without author’s
permission

16.6. Periodizing transformations 81

−0.2 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
1

0.
2

0.
3

0.
4

f(x) = ((x −− 1 4))3

−0.2 0.2 0.4 0.6 0.8 1.0 1.2
0.

0
0.

1
0.

2
0.

3
0.

4

Beta(3,3) periodization

−0.2 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
1

0.
2

0.
3

0.
4

Beta(4,4) periodization

−0.2 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
1

0.
2

0.
3

0.
4

Sidi periodization

Smooth transformation periodizations of ((x −− 1 4))3

Figure 16.6: The first panel shows f(x) = (x − 1/4)3 on [0, 1) with a portion
of its periodic extension. The next three panels show smooth transformation
periodizations of f(x) based on two Beta CDFs and a transformation of Sidi.

smoothness along axis parallel directions is a ‘QMC-friendly’ lack of smoothness
as discussed by Wang and Sloan (2011).

Table 16.3 adds a column for a Korobov rule with the baker function to
the estimates of the wing weight integral from Table 16.2. We see a much
more stable estimate for Korobov points using the baker’s transformation as
n increases. By that standard, the baker’s transformation appears to have
improved the accuracy of the Korobov lattice as predicted by Hickernell (2002).

© Art Owen 2019 do not distribute or post electronically without author’s
permission

82 16. Lattice rules

n Korobov K.+baker Halton

1021 268.0803 268.0743 267.4654
2039 267.9789 268.0739 267.5688
4093 268.0776 268.0750 267.8209
8191 268.0763 268.0753 267.9668

16381 268.0753 268.0752 268.0193

Table 16.3: Sample sizes n and integral estimates for the mean wing weight. The
methods are Korobov points, Korobov points with a baker’s transformation, and
Halton points.

16.7 Lattice parameter search

Searching for good lattice parameters is a job for specialists. Fortunately, they
publish tables with values that they find work well. See for example Hua and
Wang (1981), Sloan and Joe (1994), and L’Ecuyer and Lemieux (2000). As
computers get more powerful, sample sizes grow, and static lists of tables become
obsolete. As a result, we can expect to need new searches as long as computers
keep improving.

Before doing the search, one shows theoretically that there are good lattices
to be found. Somewhat disturbingly, this step proceeds by showing that the
average quality for a randomly chosen lattice is acceptable. For rank-1 rules,
the average might be taken over all vectors (z1, z2, . . . , zd) subject only to each
zj being an integer between 1 and n − 1 inclusive with GCD(zj , n) = 1. Sloan
and Joe (1994, Chapter 4.4) note that it is enough to search with zj 6 bn/2c.
Then we can conclude that there must be at least one such good parameter
vector z. The reason that this argument is disturbing is that it shows existence
of good parameters but does not point out any single specific good parameter
vector. If we really did pick the vector at random, then we might get one that
is much worse than average and then use it on every quadrature problem. Once
the search has begun on the computer, we do get numerical values of the figure
of merit in use and we can control the probability of a bad result. If we choose z
uniformly at random from the specified set, then there is at most 0.5 probability
that our criterion is worse than average. If we choose 10 times at random, then
there is less than 2−10 < 0.001 probability that the best of those 10 is worse
than the average. There is also at most 10−10 probability that the best one
exceeds 10 times the average.

Some of the searches are done with criteria other than Pα. Sometimes it
is possible to compute the ratio of the attained criterion to a bound on the
best possible value for that criterion. L’Ecuyer and Munger (2016) include
such a relative quality option for a spectral criterion that describes the spacings
between lattice planes.

What makes the search much more feasible is that a greedy component-by-
component (CBC) strategy is now known to find a good lattice. CBC search

© Art Owen 2019 do not distribute or post electronically without author’s
permission

16.8. Embedded, extensible and shifted lattices 83

was proposed by Korobov (1959). It was long forgotten and then reinvented
by Sloan and Reztsov (2002). We could reasonably be concerned that a greedy
search, choosing one zj at a time, would be suboptimal. Kuo (2003) shows
that CBC search produces lattices that attain the same convergence rate as
optimizing all of z2, . . . , zd jointly. Given n, we pick (z1, . . . , zk) to get a good k
dimensional rule, working up from k = 1 to d. When searching for zk we retain
the values z1, . . . , zk−1 from the earlier searches. The starting point is easy.
Because any z1 relatively prime to n will give the same 1 dimensional lattice
we may take z1 = 1. Nuyens and Cools (2006) brought a significant speedup to
CBC searches by employing fast Fourier transformations.

16.8 Embedded, extensible and shifted lattices

The lattice rules presented so far are not extensible. If n proves to be too small,
then we have to start over with a larger number n′ > n of points and may
even have to repeat a parameter search for lattices of size n′. While rank-1
lattice rules are an improvement over the Kronecker rules of §15.14, they have
given up the extensibility of Kronecker rules in return for having especially good
performance at certain special values of n such as prime numbers or powers of
2. Here we consider ways to produce rank-1 lattice rules with more than one
especially good sample size.

Embedded lattice rules of rank-1 in [0, 1]d are constructed to be extensible
through a finite sequence of sample sizes n for a finite list of dimensions d. Most
commonly

n = bm, m1 6 m 6 m2 and 1 6 d 6 dmax.

Here b > 2 is an integer, and b = 2 is the usual choice. We will use the term
‘embedded’ to mean that the number of levels of n or d is finite, but greater
than 1. By contrast, ‘extensible’ means that there are an infinite number of
levels. The component-by-component constructions in §16.7 produce rules with
a fixed n that are extensible in d. They have been generalized to produce rules
that are embedded with respect to n, but are extensible in d. Some lattice rules
are extensible in both n and d.

It is common for embedded and extensible lattice rules to be constructed
using a shift modulo one. For ∆ ∈ [0, 1)d, the shifted lattice rule has

xi =
{ (i− 1)z

n
+ ∆

}
, i = 1, . . . , n

for a vector z ∈ Zd. We will consider random ∆ in §17.3. The integration error
of a lattice from (16.12) becomes∑

h∈L⊥∗

f̂(h)e2π
√
−1∆Th. (16.26)

See Exercise 16.7.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

84 16. Lattice rules

Cools et al. (2006) have a strategy for embedded lattice rules of size n = 2m

for m1 6 m 6 m2. Let wce(n, d,z) be the worst case error when using the
vector z ∈ Zd in a rank-1 lattice rule with n points in dimension d. This
quantity could be the P2(z;n) from §16.4 but those authors include more general
criteria including some designed for the weighted spaces discussed in §16.9. The
search is for a good vector z ∈ Zd among those with all gcd(zj , b) = 1. For
m = m1, . . . ,m2, let z(m) minimize wce(bm, d,z). Then let

wcerel(z) = max
m16m6m2

wce(bm, d,z)

wce(bm, d,z(m))
.

Given z1, z2, . . . , zd−1, they choose zd to minimize the worst case relative error
wcerel(z) above. They report that those worst case relative errors are typically
smaller than 2. They actually tune their performance measures to account for
a random ∆, so the story is a bit more complicated than the above account.

The whole search can be done in time O(nd(log(n))2) time, for prime b where
n = bm2 . For fixed d, the cost to compute f(x1), · · · , f(xbm) will ordinarily be
O(bm) for a value of m between m1 and m2, so for very large sample sizes
the search cost will not be negligible. The cost to compute each f(xi) could
depend on d in many ways. If it is sublinear in d, then the construction cost is
asymptotically dominant, while if it it superlinear in d, then the construction
cost can be negligible.

An extensible shifted lattice rule with shift ∆ ∈ [0, 1)d is an infinite
sequence xi = {φb(i − 1)z + ∆} for i > 1, where φb(·) is the radical inverse
function that we used to generate the van der Corput sequence in §15.5. That
is, we use the points

{φb(i)z + ∆}, i > 0.

As before z ∈ Zd. We choose z in order to get a good lattice rule on n = bm

points. Now consider indices i = `bm, `bm + 1, `bm + 2, . . . , (`+ 1)bm − 1 for an
integer ` > 0. Over this range φb(i) takes the values

φb(`)b
−m−1 + φb(0), φb(`)b

−m−1 + φb(1), . . . , φb(`)b
−m−1 + φb(b

m − 1).

These are a reordering of

φb(`)b
−m−1 + j/bm, 0 6 j < bm.

As a result, the `’th block of consecutive point is a shifted lattice rule with shift
∆ + φb(`)b

−m−1. We get an infinite sequence of shifted lattice rules, each of
length bm. They do not repeat. If we choose ∆ = 0, then the first block is a
usual rank-1 lattice rule, while all subsequent blocks are shifted lattice rules.

Extensible lattice rules were proposed by Maize (1981) and rediscovered
by Hickernell and Hong (1997) and further studied by Hickernell et al. (2000).
Hickernell and Niederreiter (2003) prove, using an averaging argument, that
good extensible rank-1 lattices exist. Table 16.4 gives some example rules.
They are for points {φ2(i)z + ∆} for a Korobov vector z = (1, a, . . . , as−1) in
dimension s 6 d. They are designed for i = 0, . . . , 2m for m0 6 m 6 m1 and

© Art Owen 2019 do not distribute or post electronically without author’s
permission

16.9. Weighted spaces 85

Criterion m0 m1 d a

Weighted P2 0 17 32 17797
Weighted P2 13 20 32 407641
Spectral 0 17 25 1267
Spectral 15 24 32 4450341

Table 16.4: Selected extensible Korobov rules from Table 4.1 of Hickernell et al.
(2000). They use z = (1, a, . . . , as−1) to integrate over [0, 1)s for s 6 d. The
intended sample sizes are n = bm for m0 6 m 6 m1.

thereafter for i = 0, . . . , `2m1 , for ` > 1. The criterion ‘weighted P2’ refers to
a criterion designed for functions in a weighted space model that downweights
the importance of higher order interactions in f . The article describes them as
using α = 1 but ordinarily α > 1 is required for lattices, and they do use the
Bernoulli polynomial of degree two. The ones labeled ‘Spectral’ use a criterion
similar to the ones used to design random number generators. The selected
rules in Table 16.4 cover two ranges of sample sizes.

16.9 Weighted spaces

Lattices can be custom designed to integrate functions in the weighted spaces of
§7.7. The weights are incorporated into a figure of merit and then it is possible
to do a custom search for a lattice rule just before evaluating an integrand,
though that does raise the cost.

To describe these methods, for u ⊆ {1, 2, . . . , d}, let xu be the components
of x for j ∈ u. L’Ecuyer and Munger (2016) consider criteria of the form

∑
∅ 6=u⊆{1,2,...,d}

γu,q ×Du(x1,u, . . . ,xn,u)q

where q > 1 and γu,q are real numbers and Du is a badness measure for points
in [0, 1]|u|. It could be the worst case error from §16.4, via D2

u = P2(z;n). They
include several other performance measures. They write their weights γqu but
then remark that their methods allow negative weights, so writing γu,q makes
it clear that the weights need not be the q’th power of a real number. Their
optimization takes account of a fixed set of sample sizes, but not an infinite set.
That is, their rules are embedded but not extensible in n.

Section 7 of Kuo and Nuyens (2016) describes software for constructing lat-
tices in weighted spaces. They also consider polynomial lattice rules mentioned
in the end notes of Chapter 15.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

86 16. Lattice rules

Chapter end notes

Lattice rules were proposed by Korobov (1959), with early contributions by Hua
and Wang (1960) and Hlawka (1962). They were earlier called the number
theoretic method because of the use of number theory in the searches for
good parameter values. More information on lattice rules may be found in the
monographs by Sloan and Joe (1994), Hua and Wang (1981) and Niederreiter
(1992b) as well as the article by Lyness (1989). Fang and Wang (1994) give
applications to statistics. Most of the literature on lattice rules emphasizes
periodic integrands. Dick et al. (2014) are an exception. In place of functions
ψh(x) = exp(2π

√
−1hTx), they use

∏
j∈u
√

2 cos(πkjxj) for u ⊆ {1, 2, . . . , d}
and integers kj > 1.

The literature on lattice rules refers to both Korobov spaces and Sobolev
spaces. Korobov spaces have periodic integrands and integrands in Sobolev
spaces are not necessarily periodic.

Fibonacci lattices attain optimal discrepancy and L2-discrepancy among lat-
tice rules in [0, 1)2. Breneis and Hinrichs (2019) describe several optimality re-
sults for Fibonacci lattices. For d > 3, there is no best family of lattice rules
comparable to Fibonacci lattices for d = 2.

Weighted spaces were introduced by Hickernell (1996b) to improve the qual-
ity of lattice rules in their lower dimensional projections. Wang and Sloan
(2006) describe a sense in which lattice rule constructions that are not designed
for weighted spaces are more sensitive to equidistribution of higher dimensional
projections than they are to lower dimensional projections.

Higher rank lattice rules

An estimate from a rank-2 lattice rule takes the form

µ̂ =
1

n

n1∑
i1=1

n2∑
i2=1

f

({
i1 − 1

n1
z1 +

i2 − 1

n2
z2

})
(16.27)

where n = n1n2 and z1, z2 ∈ Zd are carefully chosen vectors of integers. More
generally, for 1 6 r 6 d, a rank-r rule takes the form

µ̂ =
1

n

n1∑
i1=1

· · ·
nr∑
ir=0

f

({
r∑
j=1

ij − 1

nj
zr

})
(16.28)

where n =
∏r
j=1 nj and z1, . . . ,zr ∈ Zd.

The rank-1 lattice rules are formed as n consecutive integer multiples of a sin-
gle vector z. Geometrically they are formed by taking equispaced points along a
line through the origin and then putting them into [0, 1)d by a wraparound oper-
ation corresponding to taking the points modulo 1. Rank-2 lattices are obtained
by taking a rectangular grid of points in a plane through the origin and reducing
them modulo 1 to lie within [0, 1)d. Rank-r rules exist for any integer r between
1 and d inclusive. Some of them are presented in Sloan and Joe (1994). Higher

© Art Owen 2019 do not distribute or post electronically without author’s
permission

End Notes 87

rank rules also have dual lattices and they satisfy Proposition 16.1, though the
proof is more subtle in the general case.

Rules of rank 2 and higher can be shown to achieve the higher order accuracy
that rank-1 rules obtain for smooth periodic functions. Joe and Disney (1993)
describe how the average rank r + 1-rule is better than the average rank-r rule
for 1 6 r < d. There is numerical evidence that well chosen rank-2 rules can
be somewhat better than rank-1 rules (see Sloan and Joe (1994)), but it in the
examples they do not appear to be much better. So far, higher rank rules have
not displaced rank-1 rules in practice. One disadvantage of higher order rules is
that they require a search for good choices of (zj , nj) for j = 1, . . . , r. If r > 1,
then the search is more challenging.

Fourier convergence

Many convergence results for multidimensional Fourier series are in (Grafakos,
2004, Chapter 3) and yet more are in Golubov (1984) who cites 474 references on
the topic. A sufficient condition for f to have an absolutely summable Fourier
expansion is that f({x}) have α > d/2 derivatives. Conversely, there exist
functions with exactly d/2 derivatives and divergent Fourier coefficient sums.
The condition allows for non-integer α as next, but the more important point
is that for larger d ever more smoothness is required of f by this sufficient
condition. Differentiability of non-integer order α > 0 then means that every
partial derivative of f of order bαc is Hölder continuous of order β = α − bαc.
The function g is Hölder continuous of order β if |g(x) − g(x + δ)| = O(‖δ‖β)
as δ → 0.

Lattices versus nets

Prior to the 1990s, lattice rules could be designed to exploit increased smooth-
ness of the integrand, while digital nets could not. Digital nets were known to
be part of extensible in n sequences while lattices were not extensible. Finally,
lattices required challenging parameter searches while digital nets were almost
automatic: Faure sequences require no search, and while Sobol’ sequences re-
quire a choice of direction numbers, there are just a small number of commonly
used choices.

Now the features of each family of methods have found parallels in the other.
The polynomial lattice rules of Niederreiter (1992a) provide a mechanism to
search among digital net constructions. Hickernell et al. (2000) brought exten-
sibility to lattice rules. The advent of higher order nets, also called interlaced
nets by Dick (2008) yielded digital net constructions that could exploit increased
smoothness. The expansion into Walsh functions for digital nets in §15.13 is a
natural parallel to the Fourier expansions used for lattices.

It is difficult to choose between lattices or digital nets, at least based on
accuracy. The difference between QMC and MC is much more important than
the choice of which sort of MC to use. Even for one specific domain, the valu-
ation of Asian options in finance, Lemieux and L’Ecuyer (1998) found lattices

© Art Owen 2019 do not distribute or post electronically without author’s
permission

88 16. Lattice rules

working best in some examples and nets working best in others.

Exercises

16.1. Prove that the mean of x1, . . . ,xn ∈ [0, 1)d from a rank-1 lattice rule has
all d components equal to 1/2−1/(2n). For the sample sizes n in Table 16.3, find
the mean of x1, . . . ,xn ∈ [0, 1]10 when xi are taken from the Halton sequence.
Subtract each component of the mean from 1/2 and multiply the absolute value
of the difference by n. Compare the result to corresponding results for lattice
points.

16.2. Prove that the set L⊥ is a lattice.

16.3. Let f be defined on [0, 1)d for d > 1. Show that the function (f(x) +
f(1− x))/2 with 1− x taken componentwise is not necessarily periodic.

16.4. Prove that the baker periodization satisfies
∫
f̃baker(x) dx =

∫
f(x) dx.

16.5. Sidi’s change of variable periodization results in a lattice rule that cor-
rectly integrates constant functions.

a) Show with a small example that the Beta(2,2) periodization does not
always correctly integrate constant functions.

b) Determine whether lattice rules incorporating the baker transformation
always correctly integrate constant functions. Do the same for the reflec-
tion periodization.

c) Now consider the linear functions xj − 1/2 for j = 1, . . . , d. These of
course integrate to 0. Which of the change of variable transformations we
considered will lead to correct integration of these linear functions.

16.6. Prove that equality holds in (16.15) for f given by (16.16).

16.7. Prove equation (16.26). This expression involves complex numbers even
though the integration error must be real for f(x) ∈ R. Show that the expression
is indeed real, in some other way than simply observing that µ̂−µ must be real
when µ̂, µ ∈ R.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17

Randomized quasi-Monte Carlo

From Chapters 15 and 16 we see that quasi-Monte Carlo (QMC) methods can
vastly outperform Monte Carlo (MC). Under the right regularity on f , QMC
can attain an error of O(n−1+ε) or even O(n−α+ε) for some α > 1 and all ε > 0,
compared to a root mean squared error (RMSE) of O(n−1/2) for MC.

A major difficulty with QMC is that we cannot estimate the size of the error
from the QMC sample values f(x1), . . . , f(xn). The theory provides estimates
for |µ̂ − µ|, but they depend on virtually unknowable quantities, may apply
to worst case functions quite different from f , and the estimates are usually
asymptotic in n.

The situation for plain MC, while not perfect, is much more satisfactory.
The RMSE is exactly σ/

√
n for the n we used, where σ2 is the variance of the

f we studied. While σ2 is unknown, MC provides a useful unbiased estimate s2

of it, and the central limit theorem gives us asymptotic confidence statements.
Those account for the estimation error in both µ̂ and s. When we want 99%
coverage, we get 99% + O(1/n) coverage. Our uncertainty quantification is in
this sense even more precise than our estimate.

In this chapter we consider randomized QMC (RQMC) methods to get the
accuracy of QMC with the error estimation advantage of MC. In an RQMC
method, the points x1, . . . ,xn are individually U[0, 1]d, but collectively of low
discrepancy. It will follow that µ̂ is then an unbiased estimate of µ with at least
QMC accuracy. Then independent replications of the QMC rule provide an MC
basis for error estimation.

We will see some circumstances where RQMC ends up being even more accu-
rate than plain QMC. Randomization also helps to protect against some worst
case outcomes, or at least to make their probabilities negligibly small. Random-
ization even helps to make the sample points avoid singularities, whether their

89

90 17. Randomized quasi-Monte Carlo

locations are known or unknown and RQMC can still be better than MC even
if the integrand does not have bounded variation.

As we noted in Chapter 15, the points xi in RQMC are variously defined as
elements of [0, 1]d, (0, 1)d or [0, 1)d, even though U[0, 1]d, U(0, 1)d and U[0, 1)d

are all the same distribution. The cube [0, 1)d is convenient when f is periodic
or when xi have to be placed into congruent strata, while it is better to define f
on [0, 1]d when we need to consider its total variation or Riemann integrability,
and (0, 1)d is convenient for some unbounded integrands.

17.1 RQMC definitions and basic properties

Random variables xi ∈ [0, 1]d for i > 1 comprise a randomized quasi-Monte
Carlo rule if there exist B <∞ and N > 0 with

P
(
D∗n(x1, . . . ,xn) < B(log n)d/n

)
= 1, for all n > N, and, (17.1)

xi ∼ U[0, 1]d, for all i > 1. (17.2)

This definition applies to an infinite sequence. We can also define a triangular
array version of RQMC. There xnji ∼ U[0, 1]d for j > 1 and i = 1, . . . , nj and
P
(
D∗nn

(xnj1, . . . ,xnjnj) < B(log nj)
d/nj

)
= 1 for j > 1. The sample sizes

satisfy nj → ∞ as j → ∞, with nj+1 > nj . For example, they may be a
sequence of prime numbers, or powers of 2.

Constructions of RQMC points begin with QMC points a1, . . . ,an ∈ [0, 1]d.
Then we apply randomizations, generating xi ∼ U[0, 1]d from ai, while pre-
serving in xi some of the QMC structure from ai. Before describing specific
constructions, we look at their basic properties, as well as how to use random-
ization to estimate error.

Given n points x1, . . . ,xn ∈ [0, 1]d of an RQMC rule, the estimate of µ =∫
[0,1]d

f(x) dx is the usual average

µ̂ =
1

n

n∑
i=1

f(xi).

The RQMC estimate is unbiased, because

E(µ̂) =
1

n

n∑
i=1

E(f(xi)), and

E(f(xi)) =

∫
[0,1]d

f(x) dx = µ.

If f has bounded variation in the sense of Hardy and Krause, then

Var(µ̂) = E((µ̂− µ)2) 6 E
(
(D∗n(x1, . . . ,xn)VHK(f))2

)
< B2VHK(f)2 log(n)2d

n2

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.1. RQMC definitions and basic properties 91

for large enough n, so RQMC is asymptotically better than Monte Carlo.
RQMC provides an unbiased estimate of µ for which the QMC error bounds

apply. RQMC estimates have an RMSE that is O(n−1+ε) for any ε > 0. The
process that turns a1, . . . ,an into random points x1, . . . ,xn can be repeated
independently R > 2 times, giving µ̂1, . . . , µ̂R. Then we may form the pooled
estimate,

µ̂pool =
1

R

R∑
r=1

µ̂r

and its associated variance estimate

V̂ar(µ̂pool) =
1

R(R− 1)

R∑
r=1

(µ̂r − µ̂pool)
2.

Because µ̂1, . . . , µ̂R are independent and identically distributed, we find that
E(µ̂pool) = µ and E(V̂ar(µ̂pool)) = Var(µ̂pool).

A replicated RQMC estimate requires nR function evaluations. When f is of
bounded variation, the error in µ̂pool is O(n−1+εR−1/2). Given an upper bound
on nR, the most accurate estimate of µ is obtained by taking n large and R
small. Taking R small will result in a poor variance estimate. The estimate of
Var(µ̂pool) is based on a sample of R independent replicates. The relative error

V̂ar(µ̂pool)/Var(µ̂pool)−1 decreases at the rate O(R−1/2), for any fixed n, when
E(µ̂4

r) <∞.
Confidence intervals are better than variance estimates for quantifying the

uncertainty in µ̂pool. If R is large, then an asymptotic 99% confidence inter-

val for µ is µ̂pool ± 2.58V̂ar(µ̂pool). For smaller R it is better to use µ̂pool ±
t0.995
(R−1)V̂ar(µ̂pool) where tα(k) is the α-quantile of the t distribution on k degrees

of freedom. The attained coverage of an asymptotic 99% confidence interval is
typically 0.99 + O(1/R), compared to the O(1/

√
R) error in the variance esti-

mate. The accuracy of these approximate confidence intervals depends strongly
on the third central moment of µ̂r. When we suspect that µ̂r has a very skewed
distribution, then more replicates are needed. It is also possible to replace
the standard CLT-based confidence intervals by those based on the bootstrap t
method described in the chapter end notes. The coverage error in bootstrap t
intervals is typically smaller than other nonparametric confidence interval meth-
ods.

The choice of n and R thus depends on the relative importance of the accu-
racy of µ̂pool and the accuracy of our confidence interval. Even when accuracy
of µ̂pool takes precedence, it is reasonable to do some replicates. It would be an
odd use case indeed, if we needed utmost accuracy in µ, but were completely
uninterested in verifying what accuracy we had achieved.

When we want to estimate µ̂pool well and can accept a rough estimate of its
error, then we could take R = 5 or 10. Like any rule of thumb this guideline
could give poor results in extreme cases. For example, when µ̂pool has a very
long-tailed distribution, we might get poor coverage. There is more discussion
of uncertainty quantification for RQMC in §17.4, which has a worked example.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

92 17. Randomized quasi-Monte Carlo

Sometimes we may want a very good estimate of Var(µ̂pool) in its own right.
For example, when we need to decide which of two RQMC methods to adopt for
future problems, it would be worthwhile to carefully investigate their variances
on a collection of similar test problems. Then we might want R as large as 300
or even 1000 during the tests, though smaller R would be used later on with
the selected method.

Sometimes a central limit theorem holds for each µ̂r as n → ∞. Then we
may find that the individual µ̂r values are approximately normally distributed.
In that case, a smaller value of R is likely to be large enough to give a good
confidence interval.

17.2 Effective dimension for RQMC

The ANOVA decomposition (Appendix §A) of a square integrable function f
on (0, 1)d is

f(x) =
∑
u⊆1:d

fu(x) (17.3)

where fu(x) only depends on x through xu. This fu also satisfies
∫ 1

0
fu(x) dxj =

0 whenever j ∈ u. Here f∅(x) is a constant function always equal to µ. For
x ∼ U(0, 1)d, Var(f(x)) =

∑
u σ

2
u where σ2

u = Var(fu(x)). Under RQMC we
can decompose the variance of µ̂ into components too.

Theorem 17.1. Let f be square integrable with ANOVA decomposition (17.3).
If x1, . . . ,xn are an RQMC point set, then

Var

(
1

n

n∑
i=1

f(xi)

)
=
∑
u⊆1:d

Var

(
1

n

n∑
i=1

fu(xi)

)
. (17.4)

Proof. Because

Var

(
1

n

n∑
i=1

f(xi)

)
=
∑
u⊆1:d

∑
v⊆1:d

Cov

(
1

n

n∑
i=1

fu(xi),
1

n

n∑
i=1

fv(xi)

)
,

it is enough to show that

Cov

(n∑
i=1

fu(xi),

n∑
i=1

fv(xi)

)
= 0

for any two distinct subsets u and v of 1:d. This is automatically true if either
u or v is ∅ because f∅ is constant. Without loss of generality, let j ∈ u with
j 6∈ v with v 6= ∅. Then xi ∼ U(0, 1)d implies that E(fu(xi)) = E(fv(xi)) = 0.
Let xi′,−j be composed of xik for all k 6= j. The covariance above is then

n∑
i=1

n∑
i′=1

E(fu(xi)fv(xi′)) =

n∑
i=1

n∑
i′=1

E
(
E(fu(xi)fv(xi′) |xi′,−j)

)
© Art Owen 2019 do not distribute or post electronically without author’s

permission

17.2. Effective dimension for RQMC 93

=

n∑
i=1

n∑
i′=1

E
(
fu(xi)E(fv(xi′) |xi′,−j)

)
= 0

because fv integrates to zero over xj .

By Theorem 17.1, we can write the RQMC variance as

Var

(
1

n

n∑
i=1

f(xi)

)
=

1

n

∑
u6=∅

Γuσ
2
u (17.5)

for gain coefficients Γu > 0 that quantify how much better RQMC is than
MC for the given integrand f and variables xu. If all Γu = 1, then RQMC has
exactly the same variance as MC. A common feature in RQMC is that Γu � 1
for subsets u with small cardinality |u|. It is possible to have Γu > 1 for some
sets, especially those with large cardinality. When f is dominated by effects fu
with small |u|, then RQMC can bring a great improvement. There are several
ways to measure the extent to which an integrand f is dominated by small
subsets u.

Definition 17.1. The function f : (0, 1)d → R has effective dimension s > 1 in
the superposition sense at level 0.99 if s is the smallest integer with∑

u:|u|6s

σ2
u > 0.99σ2.

Another notion of effective dimension has f depending primarily on the first
s input variables. We let due = max{1 6 j 6 d | j ∈ u} with d∅e = 0.

Definition 17.2. The function f : (0, 1)d → R has effective dimension s > 1 in
the truncation sense at level 0.99 if s is the smallest integer with∑

u:due6s

σ2
u > 0.99σ2.

The threshold 0.99 in effective dimension is arbitrary. It is motivated by
the idea that if we could remove about 99% of the variance through methods
that are very good for some u, then we might be able to speed up estimation
by a factor of about 100. It can be difficult to estimate the effective dimension
in specific examples. The mean dimensions of f in the superposition and
truncation senses are

νs(f) =
1

σ2

∑
u⊆1:d

|u|σ2
u, and (17.6)

νt(f) =
1

σ2

∑
u⊆1:d

dueσ2
u (17.7)

respectively. These are well defined unless σ2 = 0. In that case we could take
νs(f) = νt(f) = 0, or we may simply ignore this exception, as we seldom need
to integrate a function with σ2 = 0.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

94 17. Randomized quasi-Monte Carlo

●

●

●

●

●

●

●

●

●

●

●

●

●

Before

●

●

●

●

●

●

●

●

●

●

●

●

●

Shift

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

After

Cranley−Patterson rotation

Figure 17.1: The left panel has 13 points in the unit square. The center panel
shows them shifted right by 0.3 and up by 0.125 with wraparound. The right
panel shows the resulting points.

The value νs is comparatively easy to estimate by Sobol’ indices. We can
use the identity

σ2νs(f) =
1

2

d∑
j=1

∫ 1

0

∫
[0,1]d

(f(x)− f(x−j :zj)
2 dx dzj (17.8)

See Appendix §A. If νs is close to one, then it means that f is well approximated
by an additive function.

17.3 Cranley-Patterson rotation and lattices

A simple random shift modulo 1 is often used to randomize lattice rules. Let
a1, . . . ,an ∈ [0, 1]d. A Cranley-Patterson rotation of these points takes the
form

xi = ai +U mod 1

interpreted componentwise, where U ∼ U(0, 1)d. The method is named for the
authors of the paper Cranley and Patterson (1976) where the idea was proposed
for lattice rules. Figure 17.1 illustrates Cranley-Patterson rotation for d = 2.

The Cranley-Patterson rotation of any point a ∈ [0, 1]d is uniformly dis-
tributed. This is geometrically reasonable. The value a+U mod 1 is the random
point U shifted right with wraparound by the amount a. The result a +U is
in a region E if and only if U is in E shifted left by a, again with wraparound.
Shifting the region left might break it into pieces but does not change the total
volume of the pieces. Therefore we expect P(a+U ∈ E) = vol(E) = P(U ∈ E).
The proof is as follows.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.3. Cranley-Patterson rotation and lattices 95

Proposition 17.1. Let a ∈ [0, 1]d for d > 1. If x = a + U mod 1 for U ∼
U(0, 1)d then x ∼ U(0, 1)d.

Proof. We begin with d = 1. If x ∈ (0, 1) then P({a+ U} < x) equals∫ 1

0

1{a+u}<x du =

∫ 1

0

1a+u<x1a+u<1 + 1a+u−1<x1a+u>1 du.

Now ∫ 1

0

1a+u<x1a+u<1 du =

∫ 1

0

1u<x−a du = max(0, x− a), and∫ 1

0

11−a6u<1−a+x du = min(1, 1− a+ x)− (1− a) = min(a, x).

Either x > a or x 6 a, but max(0, x − a) + min(a, x) = x holds in both cases.
Therefore P({a+U} < x) = x and the result is established for d = 1. For d > 1
each component {aj +Uj} ∼ U(0, 1). Then, because Uj are independent, so are
{aj + Uj}, and therefore {a+U} ∼ U(0, 1)d.

A Cranley-Patterson rotation of low discrepancy points has low discrepancy.
For example, if xi = ai +U mod 1 then

Dn(x1, . . . ,xn) 6 2dDn(a1, . . . ,an) (17.9)

holds for any U . See Exercise 17.2. Combining equation (17.9) with Propo-
sition 17.1 shows that a Cranley-Patterson rotation of low discrepancy points
yield a randomized quasi-Monte Carlo rule so that the unbiasedness and vari-
ance estimation properties in §17.1 apply. The factor 2d in (17.9) turns into
4d in a variance bound. It is however extremely conservative stemming from a
worst case or even impossible pattern among the rotated points. The sample
variance of µ̂r will depend on the specific points ai and integrand f not on
worst case ai or f . It is also not clear whether the factor 2d is even close to
best possible for any QMC points that one might use.

While Cranley-Patterson rotation of low discrepancy points will retain their
low discrepancy, Cranley-Patterson rotation of badly non-uniform points cannot
meaningfully improve them. For one thing, the original bad points would be
an inverse Cranley-Patterson rotation of our new good points and we argued
above that these rotations could not turn good points into bad ones. If there is
a dense cluster of points somewhere, after rotation that dense cluster appears
in another place, perhaps split at the boundary of the unit cube. The same
applies to a void. The unpleasant stripes and gaps from the Kronecker points
of §15.14 would simply move to new locations parallel to their old ones under
Cranley-Patterson rotation.

A Cranley-Patterson rotation of a (t,m, d)-net in base b has low discrepancy,
but the result is not usually another (t,m, d)-net. Cranley-Patterson rotations
are more commonly applied to lattice rules. The resulting points are then

© Art Owen 2019 do not distribute or post electronically without author’s
permission

96 17. Randomized quasi-Monte Carlo

a randomly shifted lattice rule. The variance of lattice rules under Cranley-
Patterson rotation can be expressed in terms of the dual lattice of the sampling
points and the Fourier coefficients of the integrand as follows.

Theorem 17.2. Let a1, . . . ,an ∈ [0, 1)d be a lattice rule with dual lattice D ∈
Zd. Let f be a square integrable function on [0, 1)d with Fourier coefficients

f̂(h) for h ∈ Zd. Let xi = ai + U mod 1 for U ∼ U(0, 1)d and i = 1, . . . , n.
Then

Var
(1

n

n∑
i=1

f(xi)
)

=
∑
h∈D∗

f̂(h)2 (17.10)

where D∗ = D \ {0}.

Proof. Tuffin (1998) proved it assuming f has an absolutely convergent Fourier
series. L’Ecuyer and Lemieux (2000) proved the version above.

It is instructive to compare equation (17.10) with the result for crude Monte
Carlo. In that case the variance is

Var(µ̂IID) =
σ2

n
=

1

n

∑
h∈Zd\{0}

f̂(h)2.

Letting µ̂CranPat refer to Cranley-Patterson rotation of a lattice rule we obtain

0 6
Var(µ̂CranPat)

Var(µ̂IID)
6 n, and so 0 6 Var(µ̂CranPat) 6 σ2. (17.11)

The upper bound is disconcerting. In such worst cases the Cranley-Patterson
method with n points is as effective as crude Monte Carlo with just 1 point.

At first sight, equation (17.11) may seem to contradict nVar(µ̂) → 0. The
resolution is as follows: if we fix a function f of bounded variation and take a
low discrepancy sequence of lattices with n→∞ then indeed nVar(µ̂CranPat)→
0. If instead, we fix an integration lattice on n points and then look for a
worst case function f = fn for that given lattice, then we can find one with
Var(µ̂CranPat) = σ2 = n×Var(µ̂IID), but we could not use the same f for all n.

The worst case is a consequence of shifted lattices being a cluster sample
as described in §10.7. The nasty integrands are constant within clusters and
vary between clusters. In one dimension, this case arises if ai = (i − 1)/n and
f happens to be a periodic function with period 1/n.

These worst case functions are extremely unlikely to arise in real applica-
tions. On the other hand, a ratio like Var(µ̂CranPat)/Var(µ̂IID) = 100 or 1000 is
very far from the worst case when n is large and would be quite disappointing
in practice. It is hard to know where the line is between realistic and unrealistic
values for Var(µ̂CranPat)/Var(µ̂IID) for lattice points.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.4. Example: wing weight function 97

n Halton Halton-b Korobov Korobov-b MC

1021 0.340 0.180 0.160 0.0014 1.70
2039 0.270 0.086 0.058 0.0029 1.20
4093 0.150 0.035 0.084 0.00076 0.87
8191 0.066 0.052 0.021 0.00015 0.61

16381 0.054 0.028 0.011 0.000038 0.43

Table 17.1: Half-widths of approximate 99% confidence intervals for the mean
wing weight, to two significant figures. Baker transformations indicated by ‘b’.
MC half-width quantities are described in the text.

n Halton Halton-b Korobov Korobov-b

1021 268.0775 268.0556 268.0946 268.0744
2039 268.1679 268.1686 268.0584 268.0755
4093 268.1102 268.0153 268.1123 268.0757
8191 268.0588 268.0723 268.0757 268.0752

16381 268.0752 268.0780 268.0763 268.0752

Table 17.2: Estimated mean wing weight based on 5 Cranley-Patterson rota-
tions.

17.4 Example: wing weight function

We can use Cranley-Patterson rotations to estimate the accuracy of QMC on
the wing weight function of §16.2. Table 17.1 results using R = 5 Cranley-
Patterson rotations for Halton and Korobov points, with and without the baker
transformation. In each case an approximate 99% confidence interval was con-
structed using as µ̂pool ± t0.995

(4) V̂ar(µ̂pool)
1/2. The half-widths reported are

t0.995
(4) V̂ar(µ̂pool)

1/2/2.
Table 17.2 gives the estimated values. For this problem RQMC has estimated

the mean to greater accuracy than might be required. The Korobov method with
a baker transformation has done particularly well. Using some replicates of that
sequence we can estimate the Monte Carlo variance. For this function σ ≈ 48.08
and so the RMSE for MC would be roughly 48.08/

√
n. A rough counterpart

to the half-widths reported in Table 17.1 would be 2.58× 48.08/
√

5n where the
factor of 5 is there to give MC the same number of sample evaluations that the
RQMC methods had.

It is remarkable how well the baker transformation applied to the Korobov
points has done. There is some theoretical reason to expect this in §16.6. Also,
the mean dimension of this function is small. Equation (17.8) describes an
integral that for the wing weight function would have 11 dimensional input.
Using some 11-dimensional RQMC points we find that the mean dimension in
the superposition sense for the wing weight function is about 1.012. This means
that at least 98.8% of the variance of f comes from an additive approximation

© Art Owen 2019 do not distribute or post electronically without author’s
permission

98 17. Randomized quasi-Monte Carlo

(Exercise 17.6). We might not have guessed from the formula in §16.2 that this
function is so nearly additive. Taylor’s theorem implies that it would be nearly
linear and hence additive over a small region where the gradient was not zero,
but it is not obvious that the region of interest is that small. Indeed, it might
not be, because the best additive approximation to the function might not be
linear. For a smooth integrand that is about 99% additive, we would ordinarily
find Latin hypercube sampling to have about 1/100 times the variance of plain
MC and yield half-widths about 1/10 times as large. The RQMC methods are
doing even better than that, so they must be accurately estimating the integrals
of fu for some u with |u| > 2.

From the replicates, we have a much better idea of the sampling error than
we got from just computing µ̂ for varying n. We might still wonder whether the
widths for the confidence intervals were accurately estimated. If we would esti-
mate the accuracy of those widths, then we would face a higher order question
about the accuracy of the estimates of accuracy. Mosteller and Tukey (1968) re-
fer to a staircase of inference with primary, secondary, tertiary and even higher
order quantities each one a more challenging estimate of the accuracy of the
preceding one. In statistics, it is common to just stop with the secondary quan-
tity, here a confidence interval. The QMC estimates of Chapters 15 and 16 stop
with the primary quantity, µ̂.

In this instance, getting 5 replicates was not so expensive. We can do 200
times the work and see what happens for R = 1000. For Korobov and Halton
points, with and without the baker transformation, and for all 5 sample sizes,
we get 20 histograms. Figure 17.2 shows four of them. One is for Korobov
points with the baker transformation at the largest sample size, n = 16381.
This was the most accurate method. Another is for Korobov and baker, with
n = 2039, the second smallest sample size. This was, subjectively, the most
visibly non-Gaussian histogram. It has two clear modes. The second most
visibly non-Gaussian histogram was for Halton with baker and n = 16381. The
histogram for shifted Halton points at that sample size looks nearly Gaussian.

The central limit theorem applies quite well to averages from any of those
distributions, even the bimodal one, as R → ∞, though we could reasonably
doubt whether R = 5 is asymptotic. Using our 1000 replicates we can see
how accurate the confidence intervals were. We will treat the average of all
1000 estimates from the Korobov points with the baker transformation and
n = 16381 as if it were the true integral µ. Then we can inspect the distribution
of

t ≡ µ̂pool − µ√
V̂ar(µ̂pool)

(17.12)

by repeatedly computing with a simple random sample of R of those 1000 esti-
mates.

Table 17.3 shows the coverage levels attained by our approximate 99% con-
fidence intervals among 100,000 repeated samplings from the histograms in Fig-
ure 17.2. The worst one is for R = 5 and the bimodal histogram discussed

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.4. Example: wing weight function 99

Korobov−b, n = 16381

Weight − 268.075

0.00021 0.00023 0.00025 0.00027

0
20

40
60

Korobov−b, n = 2039

Weight − 268.07
F

re
qu

en
cy

0.003 0.005 0.007

0
20

40
Halton−b, n = 16381

Weight − 268.07

−0.01 0.00 0.01 0.02 0.03

0
20

40
60

Halton, n = 16381

Weight − 268.07

F
re

qu
en

cy

−0.04 0.00 0.04

0
20

40
60

80

Figure 17.2: Histograms of R = 1000 replicated estimates of mean wing weight
for four RQMC estimates.

above. A user in that situation would only have about 96.50% coverage not
99%. Coverage would be much better for a user who had R = 10 and it would
be quite excellent for a user with R = 30.

Table 17.4 gives another way to judge the accuracy of the confidence in-
tervals. It shows the estimated 99’th percentiles of the distribution of |t|. For
R = 30, the t-tables give 2.75 as the 99’th percentile and the more appropriate
values are very close to 2.75. The worst case in that table is for the bimodal
histogram with R = 5. The t-tables give 4.03 and one would have needed nearly
double that to get 99% coverage.

The practical problem we face in choosing R is that we don’t know ahead of
time what the histogram of µ̂r will look like. The choice R = 30 is a commonly
quoted rule of thumb in statistics. There is however the usual rule of thumb
arms race: for any µ̂r with finite variance there’s an R < ∞ where the CLT
gives good coverage, while for any R <∞, there is a finite variance distribution
for µ̂r where the CLT will give poor coverage. There is still a role for judgment
in choosing R.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

100 17. Randomized quasi-Monte Carlo

Attained coverage R = 5 R = 10 R = 30

Korobov-b 16831 98.29 98.84 99.01
Korobov-b 2039 96.50 98.41 98.97
Halton-b 16831 97.63 98.48 98.68
Halton 16831 98.24 98.83 99.08

Table 17.3: Attained coverage percents of approximate 99% confidence intervals
based on 100,000 samples of size R from the histograms in Figure 17.2.

|t|0.99 R = 5 R = 10 R = 30 R =∞
Korobov-b 16831 4.72 3.26 2.75 2.58
Korobov-b 2039 7.55 3.63 2.76 2.58
Halton-b 16831 5.31 3.53 2.86 2.58
Halton 16831 4.83 3.28 2.71 2.58

Gaussian 4.03 3.17 2.75 2.58

Table 17.4: Ninety-ninth percentile of |t| for t given by (17.12) based on 100,000
samples of size R from the histograms in Figure 17.2. The last column is from
the central limit theorem. The bottom row is from the t(R−1) distribution for
sampling Gaussian values.

17.5 Scrambled nets

A Cranley-Patterson rotation of a digital net does not preserve the stratification
properties that define a digital net. Those properties can however be preserved
through certain strategic randomizations of the digits of the points. The scram-
bling method in this section is the most studied, but a direct implementation
requires storage proportional to nd. Computer memory is much less expensive
now than it was when that scramble was proposed, so this issue is less pressing.
After presenting results for this scrambling we will look in §17.6 at alternative
scrambles.

Suppose that a1, . . . ,an are a (t,m, d)-net in base b. Imagine that those
points are firmly embedded specks in a d dimensional solid cube [0, 1)d. If we
could split that cube [0, 1)d into b congruent slabs [`/b, (` + 1)/b) × [0, 1)d−1

for ` = 0, 1, . . . , b − 1 and shuffle those slabs in random order, then the final
positions of a1, . . . ,an would still yield a (t,m, d)-net.

The geometric reasoning is as follows. Suppose first that an elementary
interval E in base b is contained within one of the b slabs. Then it has a coun-
terpart of equal volume in each of the other b− 1 slabs. The shuffling operation
moves points ai into E that were formerly in either E (with probability 1/b) or
one of its counterparts. If vol(E) > bt−m then the net property ensures that
E ends up with the correct number of shuffled points ai. If instead, E is not
contained within a slab then it extends across all b slabs. Shuffling the slabs

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.5. Scrambled nets 101

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Before

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 1 2 3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

After

2 0 3 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Digital shuffle

Figure 17.3: This figure illustrates the first step of a base 4 scramble of 16 points
in the unit square. The square is split into vertical slabs 0, 1, 2 and 3. The slabs
are rearranged in order 2, 0, 3 and 1. The top panels show how the point that
ends up in [0, 1/4) × [1/2, 3/4) started in [1/2, 3/4) × [1/2, 3/4). The bottom
panels show a point being reordered within [0, 1)× [1/4, 5/16).

moves some points ai around within E but does not change their number and
so equidistribution is preserved in this case too.

A nested uniform scramble proceeds by slicing each of the b slabs into
b thinner ones and scrambling the thinner slabs within their respective original
slabs. Then slabs within those slabs are scrambled and the process continues re-
cursively. Conceptually this shuffling goes on forever, but in practice the process
can stop when the slabs are too thin to affect the floating point representation of
xij . Finally, the other d−1 dimensions are sliced and scrambled independently,

© Art Owen 2019 do not distribute or post electronically without author’s
permission

102 17. Randomized quasi-Monte Carlo

in the same way as the first.
The scrambling operation can be represented in terms of base b digits. For

simplicity we consider d = 1 and so instead of scrambling each aij into xij we
drop the subscript j and scramble a point ai into a point xi. Since we will
apply the same operation to all of a1, . . . , an we drop the subscript i as well and
scramble one single point

a =

∞∑
k=0

akb
−k−1 ∈ [0, 1) into x =

∞∑
k=0

xkb
−k−1,

with the understanding that (temporarily) ak and xk refer to the k’th digits of
a and x, and not the k’th points of a sequence. The digits xk ∈ {0, 1, . . . , b− 1}
are obtained by scrambling as follows:

x0 = π•(a0)

x1 = π•a0(a1)

x2 = π•a0, a1(a2)

...

xk = π•a0, a1, · · · , ak−1(ak)

(17.13)

where the various subscripted π(·)’s are independent uniform random permuta-
tions of {0, 1, . . . , b− 1}. The permutation applied to digit ak depends on digits
0 through k − 1 of a.

To scramble n points, the same set of permutations is applied to all of
a1, . . . , an creating x1, . . . , xn. To scramble d dimensional points ai ∈ [0, 1)d,
the j’th components are scrambled using independently generated permutations
πj•, πj• a0 , πj• a0,a1 , and so on.

check: digit convention, starting at 0 vs at 1
Potentially bk permutations are needed for digit k > 0 in each of d compo-

nents of the net. But a (t,m, d)-net in base b has only bm points. Thus only
bmax(k,m) permutations are needed for the digits of each component j = 1, . . . , d.
For b = 2, we then need nd permutations and each permutation is either (0, 1)
or (1, 0), so only nd bits are needed.

Proposition 17.2. Let a1, . . . ,an be a (t,m, d)-net in base b, and suppose that
x1, . . . ,xn are a nested uniform scramble of a1, . . . ,an. Then x1, . . . ,xn are a
(t,m, d)-net in base b, with probability 1. Let ai for i > 1 be a (t, d)-sequence in
base b, and suppose that xi are a nested uniform scramble of ai. Then xi are a
(t, d)-sequence in base b, with probability 1.

Proof. This is proved in Owen (1995).

The clause ‘with probability 1’ merits some explanation. Suppose that a1 =
0 and a2 = 1/2. Then a1 and a2 taken together comprise a (0, 1, 1)-net in base
2. The digits of a1 are 0.0000 · · · and those of a2 are 0.1000 · · · , both in base
2. Suppose that every digit a11k (for k > 1) in the infinite tail of 0s for a1 were

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.5. Scrambled nets 103

permuted to the value 1. Then we would get x1 = 1/2 or x1 = 1, depending on
whether digit x110 of x1 came out to 0 or 1. In the first case, x1 = 1/2 and the
interval [0, 1/2) would contain neither x1 nor x2. The second case would put
x1 = 1 leaving either [0, 1/2) or [1/2, 1) without a sample point.

More generally, if for some i > 1 and j ∈ {1, . . . , d} we should ever get
an infinite sequence of consecutive b − 1’s as permuted values of aijk = 0 for
k > k∗ then the resulting points could fail to properly populate some elementary
interval in base b. The probability of this ever happening in a finite (or even
countably infinite) number of trials is 0 and that is why the probability that xi
are a digital net (or sequence) is 1. Also, putting a point at 1/2 that should
have been inside [0, 1/2) is not a large error. The point is at distance 0 from
the desired interval!

An RQMC method also requires xi ∼ U[0, 1]d. Since this is a property of
the individual points, it suffices to verify that any single point a ∈ [0, 1)d when
scrambled yields a point x ∼ U[0, 1]d.

Proposition 17.3. For a ∈ [0, 1)d let x be a nested uniform scramble of a.
Then x ∼ U[0, 1]d.

Proof. This is proved in Owen (1995).

The idea of the proof is as follows. Scrambling the first k digits of aj places
xj into one of bk intervals [`b−k, (` + 1)b−k), for ` = 0, 1, . . . , bk − 1, each with
probability b−k. Letting k → ∞ this means that xj ∼ U[0, 1]. The d compo-
nents of x are independent, so x ∼ U[0, 1]d.

Scrambled nets have some significant advantages over randomly shifted lat-
tice rules. First, their worst case performance relative to plain Monte Carlo
is better. Second, they have an error cancellation property that, for smooth
enough f , makes them attain a better rate of convergence than unscrambled
nets obtain.

Theorem 17.3. Let x1, . . . ,xn be a nested uniform scramble of a (0,m, d)-net
in base b > max(d, 2). Let f be a function on [0, 1]d such that f(x) has variance
σ2 <∞ when x ∼ U[0, 1]d. Then

Var
(1

n

n∑
i=1

f(xi)
)
6
(b

b− 1

)min(m,d−1) σ2

n
6
(b

b− 1

)b−1 σ2

n
6
eσ2

n
.

Proof. See Owen (1997a).

Corollary 17.1. Let x1, . . . ,xn ∈ [0, 1]d be a Latin hypercube sample. Let f
be a function on [0, 1]d such that f(x) has variance σ2 <∞ when x ∼ U[0, 1]d.
Then

Var
(1

n

n∑
i=1

f(xi)
)
6

σ2

n− 1
.

Proof. For i = 1, . . . , n, let ai = ((i − 1)/n, . . . , (i − 1)/n) which is a (0, 1, d)-
net in base n. Scrambling ai generates a Latin hypercube sample. The result
follows from Theorem 17.3.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

104 17. Randomized quasi-Monte Carlo

A common way to get a (0,m, d)-net in base b is to take the first bm points
from one of Faure’s (0, d)-sequences. This requires a prime base b > d, or a
prime power b = pr > d if we use the generalization of Faure’s construction
in Niederreiter (1987). The result is a variance that is never more than e

.
=

2.7183 times the Monte Carlo variance σ2/n, because (b/(b − 1))b−1 increases
from 2 to e as b goes from 2 to ∞. Like shifted lattice sampling, this worst
case requires a quite unusual function f . Unlike shifted lattices, the worst
performance relative to plain Monte Carlo is a variance inflation factor of at
most e instead of n.

Bounds are also available for digital nets, like Sobol’s, with t > 0.

Theorem 17.4. Let x1, . . . ,xn ∈ [0, 1)d be a nested uniform scramble of a
(t,m, d)-net in base b. Let f be a function on [0, 1]d such that f(x) has variance
σ2 <∞ when x ∼ U[0, 1]d. Then

Var
(1

n

n∑
i=1

f(xi)
)
6 bt

(b+ 1

b− 1

)d−1 σ2

n
.

Proof. See Owen (1997a).

One way to construct a net with t > 0 is to merge bt identical copies of a net
with t = 0. Of course nobody would do that, but the example serves to show
that we cannot remove the leading factor of bt from Theorem 17.4 and get a
result that will hold for all scrambled nets. It is not known whether that factor
of bt applies to commonly used digital nets, such as those of Sobol’.

Suppose that f(x) is a sum of some other functions, each of which is con-
stant inside an elementary interval in base b of volume bm−t. Then µ̂ = µ with
probability 1 under scrambled net sampling. More realistically, we can approx-
imate f by such a sum of functions. If f is smooth enough, then as m increases
the best such approximation rapidly converges to f .

For our purposes here, the function f on [0, 1]d is a smooth function if

∂

∂xj1

∂

∂xj2
· · · ∂

∂xjd
f(x)

is continuous on [0, 1]d for any distinct j1, . . . , jd ∈ {1, . . . , d}. This condition
also ensures that the order of partial differentiation does not matter.

Theorem 17.5. Let f(x) be a smooth function defined on [0, 1]d and suppose
that a1, . . . ,an is a (λ, t,m, d)-net in base b > 2 (so n = λbm). If xi are a
nested uniform scramble of ai, then as n→∞ with 1 6 λ < b,

Var

(
1

n

n∑
i=1

f(xi)

)
= O

(
log(n)d−1

n3

)
.

Proof. This is from Owen (1997b), originally with a Lipshitz condition on d-fold
partial derivative of f taken once with respect to each component. Owen (2008)
weakens the assumptions to the ones given here and corrects a Lemma from the
earlier paper.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.5. Scrambled nets 105

The root mean square error in Theorem 17.5 is O(n−3/2+ε) which compares
favorably to the rate O(n−1+ε) for unscrambled nets. The reduction of about
O(n−1/2) may be interpreted as arising from random error cancellations. Ran-
dom errors tend to cancel, while deterministic ones need not.

To compare nested uniform scrambling and Cranley-Patterson rotations,
consider the points ai = (i− 1)/n for i = 1, . . . , n. These are simultaneously a
lattice rule with z = (1) as well as a (0, 1, 1)-net in base n. Applying a Cranley-
Patterson rotation shifts them all the same distance U (with wraparound). As a
result, Cranley-Patterson rotations give points with the same joint distribution
as Xi = (i − 1 + U)/n for U ∼ U[0, 1). Applying a nested uniform scram-
ble in base n is quite different. The first permutation shuffles the intervals
[j/n, (j+ 1)/n) changing nothing. The subsequent permutations take the point
at j/n and distribute it uniformly in [j/n, (j + 1)/n) with different intervals
being independent. Nested uniform sampling thus delivers a stratified sample
Xi = (i−1+Ui)/n for independent Ui ∼ U[0, 1). Stratified sampling achieves a
variance of order O(n−3) for smooth f due to error cancellation between strata.

Scrambled nets with t = 0 obey a central limit theorem as n→∞. It is not
known whether such a limit holds for t > 0.

Theorem 17.6. Let f be a function on [0, 1]d with
∫
f(x) dx = µ,∣∣∣∣ ∂d

∂x1 · · · ∂xd
f(x)− ∂d

∂x1 · · · ∂xd
f(x̃)

∣∣∣∣ 6 B‖x− x̃‖β

for some B > 0 and 0 < β 6 1, and
∫

(∂df(x)/
∏d
j=1 xj)

2 dx > 0. Let µ̂ =

(1/n)
∑n
i=1 f(xi) where x1, . . . ,xn is a scrambled (0,m, d)-net in base b. Then

P
(

µ̂− µ√
Var(µ̂)

6 z

)
→ Φ(z)

as m→∞.

Proof. Loh (2003).

Theorem 17.6 assumes some smoothness for f , quite unlike the usual cen-
tral limit theorem. It is clear that some smoothness condition on f is neces-
sary in a scrambled net central limit theorem. For example, consider f(x) =∑∞
k=1 αk1x<b−k and points x of a scrambled van der Corput sequence in base b.

The value of µ̂ depends entirely on how close to zero the smallest of x1, . . . , xn
happens to be. As a result, µ̂ is not normally distributed since the most probable
value for µ̂ will have probability (b− 1)/b.

Scrambling also improves higher order nets. These are constructed by the
interleaving method of §7.3.

Theorem 17.7. Let f be a function on [0, 1]d whose partial derivatives of order
up to k > 1 in each component have finite mean square. Let z1, . . . ,zn be
formed as a nested uniform scramble of a digital (t,m, kd)-net in base b and let

© Art Owen 2019 do not distribute or post electronically without author’s
permission

106 17. Randomized quasi-Monte Carlo

x1, . . . ,xn be a k’th order digital net formed by interleaving the components of
z1, . . . ,zn. Letting µ̂ = (1/n)

∑n
i=1 f(xi), we have

Var(µ̂) = O(n−2k−1 log(n)ks+k) = O(n−2k−1+ε),

for any ε > 0.

Proof. See Dick (2011).

The RMSE for scrambled high order nets is O(n−k−1/2+ε) which compares
favorably to the deterministic error O(n−k) for higher order nets. If the smooth-
ness of the function is described by an integer k′ and the net is of order k then
the RMSE is O(n−min(k,k′)−1/2+ε).

17.6 More scrambles

The scrambling method used in §17.5 requires an amount of storage proportional
to n. Computers have much more memory now than when that scramble was
proposed, and simpler methods were devised to cope. The most important one is
a partial derandomization of that scramble, due to Matoušek, which attains the
same variance, with less storage. This section may be skipped on first reading.

Digital shift scrambling is the first alternative we consider. It is very easy to
apply, requires the same storage as Cranley-Patterson rotations, and preserves
the digital net structure. It does not satisfy the same variance bounds or have
the same convergence rates that nested uniform scrambling does.

The digital shift is a digital analogue of the random shift modulo 1 used
with lattice samples. First, we describe a digital addition operation ⊕b acting
on points x, y ∈ [0, 1) for integer base b > 2. Let x =

∑∞
k=0 xkb

−k−1 and
y =

∑∞
k=0 ykb

−k−1 for xk, yk ∈ {0, 1, . . . , b− 1}. Then

x⊕b y = z ≡
∞∑
k=0

zkb
−k−1, where

zk = xk + yk mod b.

(17.14)

When b is understood, we may write x ⊕ y. We will use ⊕ to digitally add a
random point to our QMC points as described below.

Before using ⊕, we need to add a condition that makes it well defined. In
base 10, the number 1/2 can be written two ways, as 0.5 or as 0.4999 · · · with
an infinite tail of 9s. Similarly, in base b any number `/bk for k > 1 and
1 6 ` < bk has two representations, one ending in an infinite tail of 0s and
the other ending in b− 1s. When applying ⊕b to points x, y ∈ [0, 1) we always
choose the representation ending in 0s over the one ending in b− 1s.

The number 1 is awkward to handle digitally. Representing it as 0.d0d1d2 · · ·
requires precisely the infinite tail of b−1s that we have excluded. This is why we
work with x, y ∈ [0, 1). It is however still possible to get 1 as a sum. For example,
if x = 0.1111 · · · and y = 0.3333 · · · both in base 5 then x⊕5 y = 0.4444 · · · = 1.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.6. More scrambles 107

i ai ai U ai ⊕ Ui
1 0 0.000 0.110101 0.110101
2 1/8 0.001 0.110101 0.111101
3 1/4 0.010 0.110101 0.100101
4 3/8 0.011 0.110101 0.101101
5 1/2 0.100 0.110101 0.010101
6 5/8 0.101 0.110101 0.011101
7 3/4 0.110 0.110101 0.000101
8 7/8 0.111 0.110101 0.001101

Table 17.5: This table illustrates a digital shift of a small net in [0, 1). The
original net is a1, . . . , a8, shown in the second column and (in base 2) in the
third column. The random shift is U = 0.110101 (base 2), that is, U = 0.828125.
The resulting points are in the final column.

We choose to handle this problem by treating a sum equal to 1 as if it were
0. This is the same choice we make for shifted lattices when we add numbers
modulo 1.

A digital shift randomization of a1, . . . ,an has

xi = ai ⊕b U where U ∼ U[0, 1)d.

In practice we generate only the first k digits of Uj for j = 1, . . . , d with each such
digit ujk ∼ U{0, 1, . . . , b−1}. Then we add them modulo b to the corresponding
digits of aij .

Like the nested uniform scrambling of §17.5, digital shifts yield xi ∼ U[0, 1)d.
Digital shifts also preserve the digital net properties of ai in base b (with prob-
ability one). As a result, digital shifts of (t,m, d)-nets and (t, d)-sequences in
base b provide an RQMC method.

A small random digital shift is illustrated in Table 17.5. It starts with ai
in a (0, 3, 1)-net in base 2 defined by ai = (i − 1)/8. The random shift U is
only taken to 6 base 2 places for simplicity of exposition. The first 3 bits of
ai go through all 8 possible values and after adding U the first 3 bits of the
result also go through all 8 possible values though the order has now changed.
The original points end with a tail of 0s after the first 3 bits. As a result, the
generated points all end in the same tail of digits that U has. A random digital
shift, in this small example, gives the same distribution of points that we would
get from a Cranley-Patterson rotation.

Digitally shifted nets do not have the same variance properties as fully scram-
bled nets. Their worst case performance relative to simple Monte Carlo is not
very good. The root cause is that digital shifts, like Cranley-Patterson rotations,
do not randomize the points enough. Operationally, if we knew a1, . . . ,an and
one randomized point x1 then we could reconstruct x2, . . . ,xn for a digital shift,
but not (outside of trivial cases) for a nested uniform scramble.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

108 17. Randomized quasi-Monte Carlo

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Digital shift

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Random linear

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Nested uniform

Randomized Faure points

Figure 17.4: The left panel has a digital shift of the first 530 points of the first
two components of Faure’s (53, 0)-sequence in base 53. The center panel shows
a random linear scramble. The right panel shows a nested uniform scramble.

Theorem 17.8. Let a1, . . . ,an ∈ [0, 1)d be a (t,m, d)-net in base b > 2. For
i = 1, . . . , n let xi = ai ⊕b U where U ∼ U[0, 1)d. Then there exist functions
f(x) defined on [0, 1)d such that

Var

(
1

n

n∑
i=1

f
(
ai +U

))
= σ2

where σ2 is the variance of f(U).

Proof. This follows from Proposition 6.3 of Lemieux (2009).

Theorem 17.8 is the digital scrambling counterpart to Theorem 17.2 for
shifted lattices. As with shifted lattices and fully scrambled nets, the worst
case functions for digital shifts are of a type quite unlikely to arise in real
applications. Once again, while the very worst functions are implausible for
applications, little is known about where to draw the line between realistic and
implausibly pessimistic cases.

Digital shifts do not introduce enough randomness to get the error cancel-
lation properties of scrambled nets. They do not attain a root mean squared
error of O(n−3/2+ε) the way that scrambled nets do for smooth integrands.

The key to reducing the memory requirements of nested uniform scram-
bling, while randomizing the points enough, is to replace the uniform random
scrambles by something simpler.

If p is a prime number, then a random linear permutation of {0, 1, . . . , p−1}
takes the form π(a) = g+ha mod p where g ∼ U{0, 1, . . . , p− 1} independently
of h ∼ U{1, 2, . . . , p− 1}. We only need to store g and h to represent this per-
mutation. Like uniform random permutations, random linear permutations can

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.6. More scrambles 109

be applied in a nested manner, yielding the random linear scrambles described
next.

Once again we describe the scrambling of a single point a ∈ [0, 1) yielding x ∈
[0, 1]. The same scramble gets applied to a sequence a1, . . . , an and independent
scrambles are used for components a1j , . . . , anj for j = 1, . . . , s. A random
linear scramble of a =

∑∞
`=0 a`p

−`−1 in a prime base p has digits

xk =

k∑
`=0

Mk` a` + Ck mod p

for k > 0, where

Mkk ∼ U{1, . . . , b− 1}, k > 0

Mk` ∼ U{0, 1, . . . , b− 1}, k > ` > 0, and

Ck ∼ U{0, 1, . . . , b− 1}, k > 0

(17.15)

are all independent. The resulting point is x =
∑∞
k=0 xkb

−k−1. We can also
write xk = hkak + gk mod p where hk = Mkk and gk =

∑
06`<kMk` a` +

Ck mod p, the summation being 0 for k = 0.
It is easy to see that x ∼ U[0, 1), because the terms Ck add a digital shift.

The points retain their properties as a net because the permutations simply
move elementary intervals around without altering the number of sample points
in them. As a result, random linear scrambling of digital nets yields an RQMC
method.

Theorem 17.9. Let x1, . . . ,xn be a random linear scramble of a (0,m, d)-net
in a prime base p. Let x̃1, . . . , x̃n be a nested uniform scramble of the same net
in base p. Then E((D∗n,2(x1, . . . ,xn)2) = E((D∗n,2(x̃1, . . . , x̃n)2).

Proof. Matoušek (1998) shows that the random linear scramble satisfies con-
ditions enumerated in Hickernell (1996a) for expected square discrepancy to
match that of nested uniform scrambles.

From Theorem 17.9 we see that random linear scrambles and nested uniform
scrambles lead to the same expected square L2-star discrepancies. The proofs
work by showing that the joint distribution of any pair xijk and xi′j′k′ of the
RQMC digits is the same under both kinds of scrambling. It then follows that
both scrambles result in the same variance for integral estimates µ̂. Instead
of storing about nd permutations that nested uniform scrambling requires, we
need instead about K(K+1)/2 base p digits (counting both M ’s and C’s) where
K is the number of base p digits we use to represent each number xij ∈ [0, 1).

The first 530 points of the Faure sequence in base 53 project into a small
band containing 10 parallel lines of points with wraparound, when we select
the first two components. A Cranley-Patterson rotation would simply move
the band around. A digital shift of these points, as illustrated in the leftmost
panel of Figure 17.4 looks similar to a Cranley-Patterson rotation. Both of these
randomizations deliver points that are individually U[0, 1]d but they do nothing

© Art Owen 2019 do not distribute or post electronically without author’s
permission

110 17. Randomized quasi-Monte Carlo

to improve the joint behavior of the points. A random linear scramble shakes up
the points much more as shown by the middle panel. A nested uniform scramble
randomizes the points and ends up with a less structured appearance than the
other randomizations.

There is a peculiar blank stripe in the digital shift data which makes it look
like two disjoint bands have wrapped around. The first 532 points of the Faure
sequence have a similar blank region wrapping around the boundary of the unit
square. That blank region maps onto the stripe in the first panel, under the
digital shift.

Some digital scrambles (e.g., nested uniform and random linear scrambles)
are excellent for breaking up clumps of points concentrated in lines or planes.
Such clumps are the common flaw for Halton and Faure sequences. Digit scram-
bling is not very effective at countering the rectangular clumps and voids that
appear in bad projections of the Sobol’ sequence. The fundamental reason is
that digital scrambles are constructed to preserve the number of points of a net
within every sufficiently large elementary interval. They move points from any
given elementary interval into some other one congruent to the first. If a list of
points has bad coverage of an elementary interval, then their scrambled version
will have bad coverage of some interval of the same size and shape, in a possibly
different location.

Digital shifts failed to even separate the stripes that we see in small sub-
sequences of the Faure sequence. Some other scrambles, simpler than random
linear ones, do separate the stripes.

A positional scramble of a ∈ [0, 1) in base b > 2 takes the value x =∑∞
k=0 πk(ak)b−k−1 where πk are permutations of {0, 1, . . . , b− 1}. The permu-

tations πk in a positional scramble could all be independent. Or, we could make
use of a positional scramble in which just one random permutation is used:
πk = π0 for k > 0. In either kind of positional scramble, the permutations
could be linear, when b is a prime number p, or they could be uniform. We
have already seen one kind of positional scramble. A digital shift is a positional
scramble with πk(a) = gk + a mod b where gk ∼ {0, . . . , b− 1} are independent.

Uniform random positional scrambles break up the stripes in leading sub-
sequences of the Faure sequence. See Exercises 17.3 and 17.4. These are very
easy to program and take little space, making them a better choice than digital
shifts for scrambling the Faure and Halton sequences. They do not however
attain the same variance that nested uniform and random linear scrambles do.

The points of a (t,m, d)-net in base b, for the usual constructions, have
components that are integer multiples of b−m. That is, their base b expansions
have up to m nonzero digits followed by an infinite tail of zeros. When this
happens, we do not have to explicitly scramble the infinite tail of zeros. The
infinite tail of zeros will scramble into a term that adds independent U[0, b−m)d

distributed vectors to the generated points. For nested uniform scrambling and
random linear scrambling, we can simply scramble the first m digits of ai into
x̃i and then deliver xi = x̃i + b−mui where ui ∼ U[0, 1)d are independent. For
digital scrambles and positional scrambles, we scramble the first m digits of ai
into x̃i and then deliver xi = x̃i + b−mU for one single point U ∼ U[0, 1)d.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.7. Reducing effective dimension 111

The only scramble for which a central limit theorem is known is the nested
uniform scramble. To satisfy the central limit theorem a scramble must have
an asymptotically negligible skewness: that is E((µ̂− µ)3)/E((µ̂− µ)2)3/2 → 0.
This condition can be met by arranging for the joint distribution of any three
digits xijk, xi′j′k′ and xi′′j′′k′′ used in the construction of x1, . . . ,xn to be the
same as their joint distribution in nested uniform scrambling. Higher moment
conditions are also necessary and they may be satisfied by methods that have the
same higher order joint distributions (of digits) as nested uniform scrambling.
It seems likely that the other scrambles considered here do not satisfy a central
limit theorem.

17.7 Reducing effective dimension

Sometimes we can change the integrand in a way that is favorable to RQMC
sampling. What we do is find another integrand f̃ that we know has

∫
f̃(x) dx =∫

f(x) dx, where we think that f has lower effective dimension as described by

Definition 17.1 or 17.2. For instance, if we can find a way to make f̃ nearly a
function of its first few input variables, then we may well have greatly improved
RQMC accuracy. It is hard to be sure ahead of time that accuracy will increase.
However, it is often easy to implement RQMC both ways with replicates and
then see whether accuracy improved. Coding f̃ could take some care, but then
measuring whether it is better might only take minutes or even seconds. An
effective strategy is to use intuition and domain knowledge to devise alternative
functions f̃ , and then measure empirically whether the anticipated improvement
materialized.

Many of the best examples of reducing effective dimension come from prob-
lems where f is a function of Brownian motion at d points, or more generally,
a function of a high dimensional Gaussian random vector. Let y ∼ N (µ,Σ) for
a non-singular covariance matrix Σ ∈ Rd×d, and suppose that we want to find

µ = E(g(y)) = (2π)−d/2|Σ|−1/2

∫
Rd

f(y)e−(y−µ)TΣ−1(y−µ)/2 dy.

A Monte Carlo approach takes xi
iid∼ U(0, 1)d, then zi = Φ−1(xi) (componen-

twise), then yi = µ + Czi where CCT = Σ, and it averages g(yi). The Monte
Carlo estimate of µ = E(f(x)) is

µ̂ =
1

n

n∑
i=1

f(xi), for f(x) = f(x;C) = g(µ+ CΦ−1(x)), (17.16)

with xi
iid∼ U(0, 1)d. For QMC, we replace xi

iid∼ U(0, 1)d by low discrepancy
points x1, . . . ,xn. We may get good results, but there is the risk of a bad result,
even failure to converge, when g is an unbounded function on Rd, because then
VHK(f) =∞. When f has finite variance, then both MC and RQMC will con-
verge and RQMC will have an RMSE of o(n−1/2). In that case, unboundedness

© Art Owen 2019 do not distribute or post electronically without author’s
permission

112 17. Randomized quasi-Monte Carlo

of f is no longer a problem and neither are other ways (e.g., discontinuities)
that VHK(f) =∞ could arise.

If we replace C by C̃ = CQ for an orthogonal matrix Q, then

y = µ+ CQz ∼ N (µ,CQQTCT) = N (µ,CCT) = N (µ,Σ).

We will get the same Monte Carlo mean and variance using f(x;C) or f(x; C̃),
because yi have the same distribution either way. There may be speed differ-
ences between these choices arising from different costs of computing Cz and
C̃z, but there is no difference in mean squared error for fixed n.

With (R)QMC, f(x;C) and f(x; C̃) can be very different functions of x even
when CCT = C̃C̃T = Σ. In Chapter 6 we considered generating a Brownian
motion path in three ways: sampling the increments in time order, sampling
them in arbitrary order using the Brownian bridge construction, and using prin-
cipal components. The form of the matrix C for each of those choices can be
found in that chapter.

Figure 17.5 illustrates these three constructions for Brownian motion at
points t/512 for t = 1, 2, . . . , 512. Each construction takes a point x ∈ [0, 1]512

to generate the sample path. The top panel shows a curve generated by the first
8 principal components. That curve uses the first 8 components of x. The next
512− 8 = 504 components of x are used to complete the Brownian path. Three
independent completions are shown. The first 8 components provide a ‘skeleton’
that is refined by the next 504 components. In terms of the gross outline of that
sample path, those first 8 variables appear to be much more important than
the others. The second panel shows the same quantities, replacing the principal
components skeleton by a piecewise linear skeleton formed by Brownian bridge
sampling. Again, there are three independent completions. The bottom panel
shows a standard construction where the first 8 inputs generate the curve up
to time 8/512 = 1/64, along with three completions. The first 8 inputs do not
greatly influence the path.

When the function g(·) depends on the coarse outline of the Brownian path,
the principal components and Brownian bridge constructions can be expected
to concentrate importance into the first few components of x reducing effective
dimension in the truncation sense. Conversely, if we knew that g(·) depended
only on details of how the skeleton is completed to form the path, and had noth-
ing to do with the skeleton itself, then we would not expect these constructions
to reduce effective dimension.

There is more to gain by reducing effective dimension in the superposition
sense than the truncation sense, because RQMC points normally have good
equidistribution in all projections onto one or two or a handful of coordinates,
and the truncation approach does not take account of that property. It is hard
to devise a way to reduce superposition dimension because that requires consid-
ering how the components of x interact to produce f . Strategies to concentrate
importance into the first few components of x are more plentiful, probably be-
cause it is easier to think of how to make a few variables very important.

For any sampling strategy we come up with, there will be unfavorable inte-
grands. If f̃ depends on x only through its final component, then the truncation

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.7. Reducing effective dimension 113

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

Principal components skeleton

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

Brownian bridge skeleton

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
5

1.
0

Standard skeleton

Figure 17.5: The top panel shows Brownian motion generated by principal
components at 512 points. The thicker curve shows the skeleton from the first 8
principal components. There are three realizations completing the process using
the remaining 512 − 8 = 504 principal components. The second panel shows a
piecewise linear skeleton of Brownian motion generated by 8 increments. There
are three realizations completing the process. The bottom panel shows three
sample paths sharing the same first 8 increments, with a different vertical scale.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

114 17. Randomized quasi-Monte Carlo

dimension will be the largest possible value d. If f̃ depends on x only through
the d-fold interaction f̃{1,2,...,d} then the superposition will be the largest possi-
ble value d. These outcomes seem unduly pessimistic, and they would be easily
detected in practice.

A multivariate Gaussian random vector can be sampled in any order that we
like, but the cost of the algebra and bookkeeping may depend on the order we
choose. The principal components construction is available for any covariance
matrix, even singular ones, though it does require a one time computation of up
to O(d3) cost if the matrix Σ has no special structure to exploit. For Brownian
motion it is inexpensive to sample time points in any order.

The constructions for Gaussian vectors can be generalized to multivariate
t random vectors (see §5.2), either to sample via the t-copula of §5.6, or be-
cause the problem is defined in terms of multivariate t vectors. Sampling from
a t distribution requires an additional component of x to generate the χ2 ran-
dom variable used in the denominator. Further strategies for reducing effective
dimension are described in the chapter end notes.

17.8 Example: valuing an Asian option

Here we consider a well known test problem: valuing an option that depends
on geometric Brownian motion. In this option, S(t) is the value of some traded
asset at time t. If the average of S over d time periods exceeds a strike price
K, then the holder of the option is paid the difference. This provides a hedge
against unaffordable upward price rises in the asset. The problem is to find a
fair price to pay for that potential benefit. The price depends on an interest rate
r, a measure σ2 of the asset’s price volatility, the time T at which the option
is to be paid, and also the strike price K. We want to find µ =

∫
[0,1]d

f(x) dx,

where

f(x) = e−rT max
(1

d

d∑
j=1

S(tj ,x)−K, 0
)
, for (17.17)

S(tj ,x) = S(0) exp
[
(r − σ2/2)tj + σ

√
T/d

j∑
`=1

Φ−1(x`)
]

with tj = jT/d for j = 1, . . . , d. Averaging over d time points is reasonable
when the buyer needs to make regular purchase of the asset. A classic example
is an airline hedging against price rises in jet fuel. This is called an Asian option
because it was invented in Tokyo. We use the values T = 16, S(0) = K = 100,
r = 0.05 and σ = 0.3 that were used in Hickernell et al. (2005).

The integrand (17.17) has infinite variation in the sense of Hardy and Krause.
There are two causes. First, f is unbounded. Second, there is a kink at
the set of x values for which (1/d)

∑d
j=1 S(tj ,x) = K. However, because∫

[0,1]d
f(x)2 dx < ∞ we know that scrambled nets will provide an unbiased

estimate with variance o(1/n). This integrand is not smooth enough to satisfy

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.9. Padding, hybrids and supercube sampling 115

the sufficient condition for variance O(n−3+ε) nor is it smooth enough to satisfy
the sufficient condition for Loh’s central limit theorem.

Roughly half of the time, this option ends up at value f(x) = 0 and the rest
of the time it is positive. Lowering the strike price K to well below S(0) reduces
the chance of a zero payout and raising K increases the chance of a zero payout.
For very large K, a nonzero payout becomes such a rare event that importance
sampling would be helpful.

The process S(t,x) is a geometric Brownian motion. It depends on a plain

Brownian motion sampled at times tj , that is B(tj ,x) =
√
T/d

∑j
`=1 Φ(x`).

We could as well replace that standard construction of Brownian motion at
tj = jT/d by Brownian motion sampled by the principal components construc-
tion at those time points. Figure 17.6 shows some results using Sobol’ points
with a nested uniform scramble in [0, 1]16 to evaluate this option. It is based
on 30 replicates of up n = 212 points. We do 30 replicates here because we
can then get an indication of how the variances differ between standard and
principal components constructions. By n = 212, the standard construction
has a standard deviation about ten times as large as the principal components
construction has. That corresponds to a variance ratio of about 100 in favor of
principal compnents. The plain Monte Carlo variance of this integrand is the
same under either method of sampling Brownian motion. It was estimated from
n = 220 IID geometric Brownian motion paths. The dotted line in the right
panel of Figure 17.6 gives the estimated standard deviation for the average n
plain Monte Carlo samples.

In Figure 17.7, we repeat the problem, but this time taking d = 250 time
steps. We then need a scrambled Sobol’ sequence in [0, 1]250. The direction
numbers of Joe and Kuo (2008) were used to construct Sobol’ points that were
given a nested uniform scramble. Once again RQMC outperforms MC and the
principal components construction works better than the standard one.

Comparing Figures 17.6 and 17.7 shows that an option at 250 time points
is much less valuable than one at 16 time points. An average over 16 times
points has greater variance than one over 250 times points. When by chance the
average is unusually far above K, the holder benefits. There is no compensating
cost to the holder when the average is far below K. Therefore high variance in
(1/d)

∑d
j=1 S(Tj/d;x) is beneficial to the option holder, and the option value

decreases as d increases.

17.9 Padding, hybrids and supercube sampling

It becomes harder to apply digital nets as the dimension d increases. Either the
quality parameter t must grow, as in Sobol’ and NX nets, or the base b must
grow, as in Faure nets. Similarly, as the dimension increases, the quality of a
rank 1 lattice can decrease but not increase.

Here we look at ways to use a high quality RQMC method in s dimensions
on a problem that has d > s dimensions, or even d� s dimensions. We suppose
as usual that the function f is defined on [0, 1]d, that we seek µ =

∫
f(x) dx,

© Art Owen 2019 do not distribute or post electronically without author’s
permission

116 17. Randomized quasi-Monte Carlo

50 200 500 2000

1.
7

1.
8

1.
9

2.
0

2.
1

2.
2

●

●

● ●
● ●

● ●

●

● ●

● ● ● ● ●

● ●

● ●
●

● ● ●

●

●

● ● ● ● ● ●

●

●

● ●
●

● ● ●

●

●

● ● ● ● ● ●

●

●
●

●
●

● ●
●

●

●
●

●
● ● ● ●

Option value vs n

●

●

Prin comp
Standard

2 5 20 100 500 5000
1e

−
04

1e
−

03
1e

−
02

1e
−

01
1e

+
00 ●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

Standard deviation vs n

Figure 17.6: The left panel shows 4 RQMC estimates of the option value
from (17.17) versus the number n of Sobol’ points used. The standard con-
struction is shown with open circles connected by dotted lines. The principal
components construction is shown with solid circles and lines. The right panel
plots an estimated standard deviation versus n based on R = 30 replicates. The
dashed reference line is parallel to n−1/2 the solid is parallel to n−1.

and that σ2 =
∫

(f(x)− µ)2 dx <∞.
The methods can succeed when f(x) depends very strongly on s of the

components of x and only weakly on the other d− s components. Those other
components get sampled by some lower quality method. We assume that f is
defined, using subject matter knowledge, in such a way that the importance of
xj is generally thought to decrease as j increases. In §17.7 we discuss techniques
for increasing the importance of the leading components of x.

In this setting we may combine RQMC points x̃1, . . . , x̃n ∈ [0, 1]s for s < d
with some kind of filler method on the other d− s dimensions. For example, we
could take

xij =

{
x̃ij , j 6 s

uij , s < j 6 d,
(17.18)

where uij ∼ U(0, 1) are independent of each other and of all the x̃ij .
The method (17.18) is called padding. It produces hybrid points xi.

Each individual point xi ∼ U(0, 1)d and so µ̂ = (1/n)
∑n
i=1 f(xi) is unbiased

for µ =
∫

[0,1]d
f(x) dx. We could also form hybrids using ordinary QMC points

x̃i instead of RQMC points x̃i or replace Uij by 1/2. Those combinations are

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.9. Padding, hybrids and supercube sampling 117

50 100 200 500

0.
45

0.
50

0.
55

0.
60

0.
65

●

●

●

●

●
●

●

● ●
● ● ●

●

●

●

●
●

●

●

●

● ● ● ●

●

●

●

●

●
●

●

●
● ● ● ●

●

●

●

●
●

●

●

● ● ● ● ●

Option value vs n

●

●

Prin comp
Standard

2 5 20 50 200 1000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Standard deviation vs n

Figure 17.7: This is like Figure 17.6 except that the option is averaged over
250 points instead of 16. The computations are based on a 250 dimensional
scrambled Sobol’ sequence.

harder to study than (17.18) because they merge deterministic and random
components, and they do not give an unbiased estimate of µ.

It is natural to try to replace the plain Monte Carlo portion uij by points
with better equidistribution properties. One simple improvement is to replace
the IID components by a Latin hypercube sample. That is

xij =

x̃ij , j 6 s

πj(i)− Uij
n

, s < j 6 d,
(17.19)

where πj are uniform random permutations of {1, . . . , n}, independent of the
uij and the x̃ij and each other. The resulting points xi will now be stratified in
all d univariate projections, under the very reasonable assumption that we have
chosen RQMC points x̃i with good univariate projections.

The next idea we consider is to replace the MC points by one or more other
sets of RQMC points. If we have an s-dimensional QMC rule and we want
points in dimension d = ks then it is tempting to use k independent scrambles of
(t,m, s)-net points ai with the j’th scramble producing components (j−1)s+1
through js of xi. Unfortunately, multiple scrambles of the same underlying
point set have a severe flaw that is illustrated in Figure 17.8.

To understand the problem with placing multiple scrambles of the same
QMC points side by side, we can look at components 1 and s + 1 of xi. Let

© Art Owen 2019 do not distribute or post electronically without author’s
permission

118 17. Randomized quasi-Monte Carlo

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

x2 vs. x1
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x3 vs. x1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x4 vs. x1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x3 vs. x2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x4 vs. x2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x4 vs. x3

Multiply randomized QMC (flawed)

Figure 17.8: This figure shows pairwise scatterplots of 81 points in xi ∈ [0, 1]4,
with horizontal and vertical reference lines at 1/3 and 2/3. Components 1 and 2
are a scrambled (0, 4, 2)-net in base 3. Components 3 and 4 are an independent
scramble of the same net. The joint behavior of (x1, x3) is flawed because they
are scrambles of the same points. The same holds for (x2, x4). Latin supercube
sampling repairs the flaw.

ai1 = 0.ai11ai12ai13 · · · in base b, and similarly

xi1 = 0.xi11xi12xi13 · · · , and

xi,s+1 = 0.xi,s+1,1xi,s+1,2xi,s+1,3 · · · .

Then xi11 = π1
1•1(ai11) and xi,s+1,1 = π2

1•1(ai11) where πg1•1 is the permutation
applied to the first digit of the first component of ai in group g = 1, . . . , k.
Consider all of the points xi11 that lie in the interval [`/b, (` + 1)/b) for some
` ∈ {0, 1, . . . , b− 1}. That is, their first digit is `. All such points have the same
value for ai11, namely ai11 = (π1

1•1)−1(`). Therefore they all have the same
value π2

1•1((π1
1•1)−1(`)) for xi,s+1,1. It follows that there are b squares, each

of area b−2 in [0, 1]2 whose union contains all of the n points (xi1, xi,s+1). In
Figure 17.8 we see that all 81 points (xi1, xi3) lie within 3 squares having total
area 1/9.

By considering the second digit of ai we find that all of the points lie within
b2 squares with side length b−2 and total area b−4 and from the r’th digit they
lie inside the union of br squares of total area b−2r. Even if we could apply the
scramble to an entire infinite (t, s)-sequence there would still be a set of br small
squares of total area b−2r that contained the entire infinite sequence (xi1, xi,s+1)
for i > 1. As a result, we should not expect µ̂ to converge to µ as n→∞ when
we use multiply randomized QMC points as described above.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.9. Padding, hybrids and supercube sampling 119

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x2 vs. x1

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

x3 vs. x1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x4 vs. x1

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

x3 vs. x2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x4 vs. x2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x4 vs. x3

Latin supercube sample

Figure 17.9: This figure shows Latin supercube sampling of the data from Fig-
ure 17.8. The run order of each block of points has been randomized. The
projections (xj , x`) for j ∈ {1, 2} and ` ∈ {3, 4} are now comparable to Latin
hypercube sample projections.

It is not just scrambling methods that have this flaw. Cranley-Patterson
rotations have a version of it. Suppose that xi1 = ai1 + U1 mod 1 and that
xi,s+1 = ai1 + U2 mod 1 where U1 and U2 are independent U(0, 1) random
variables. If U2 > U1, then xi,s+1 − xi1 ∈ {U2 − U1, U2 − U1 − 1} holds for all
i = 1, . . . , n. If instead U2 < U1, then xi,s+1 − xi1 ∈ {U2 − U1, U2 − U1 + 1}
for all i = 1, . . . , n. Either way, the points (xi1, xi,s+1) all lie on one line (with
wraparound) in the unit square.

We can avoid such extremely bad projections by using Latin supercube sam-

pling, described next. For j ∈ 1, . . . , k let x̃
(j)
1 , . . . , x̃

(j)
n ∈ [0, 1]sj where sj > 1

and
∑k
j=1 sj = d. A Latin supercube sample has points

xi = (x̃
(1)
π1(i), x̃

(2)
π2(i), · · · x̃

(k)
πk(i)) ∈ [0, 1]d, i = 1, . . . , n,

where π1, . . . , πk are independent uniform random permutations of {1, . . . , n}.
Ordinarily x̃

(j)
1 , . . . , x̃

(j)
n ∈ [0, 1]sj comprise an RQMC rule for each j = 1, . . . , k

and the permutations π1, . . . , πk are also independent of any randomizations in
these RQMC rules. Latin hypercube sampling §10.3 is a special case where all of

the sj = 1 and the points x̃
(j)
1 , . . . , x̃

(j)
n comprise a midpoint rule (for centered

LHS) or a stratified sample of [0, 1] (for unbiased LHS).
Figure 17.9 shows Latin supercube sampling applied to the points displayed

in Figure 17.8. The projections of variable subsets {1, 2} and {3, 4} are the same
as in Figure 17.8. They are the same points in different order. The projections

© Art Owen 2019 do not distribute or post electronically without author’s
permission

120 17. Randomized quasi-Monte Carlo

for subsets {1, 3} and {2, 4} are substantially improved. They are not of low
discrepancy: they are instead a Latin hypercube sample.

The projections for subsets {2, 3} and {1, 4} appear worse for LSS than for
multiple RQMC. With multiple RQMC, x3 is a closely related to x1 and so the
(x2, x3) projection inherits the high quality of the (x1, x2) projection. While
multiple RQMC has some projections that are better than LSS in this case, the
flawed projections for multiple RQMC are serious enough to prevent it giving
the correct answer as n→∞.

If we use k RQMC methods to get x̃
(j)
i then each x̃

(j)
πj(i) ∼ U[0, 1]sj and

because they are independent, xi ∼ U[0, 1]d. As a result, LSS yields an unbiased
estimate µ̂ = (1/n)

∑n
i=1 f(xi) of µ. If we use QMC points instead of RQMC

points then LSS is biased, though the bias may be very small.

The points x̃
(j)
i ∈ [0, 1]sj are from an RQMC rule and so we should expect

them to be at least as good, and asymptotically much better, than simple Monte
Carlo points in sj dimensions. To quantify their quality, introduce

εjn(f) = sup
z∈[0,1]d−sj

∣∣∣∣∣ 1n
n∑
i=1

f
(
z:x̃

(j)
i

)
−
∫

[0,1]sj
f(z:x) dx

∣∣∣∣∣ ,
where z:x is the point in [0, 1]d formed by using x ∈ [0, 1]sj for the sj compo-
nents corresponding to group j and z ∈ [0, 1]d−sj for the other k − 1 groups.
Then εjn(f) is the largest error we would make averaging f over the j’th RQMC
points with other components held fixed. Notice that εjn(f) is a random vari-
able. We will suppose that it is bounded, and that it is o(n−1/2), which captures
the superiority of the RQMC rules over simple Monte Carlo.

We can analyze LSS via the ANOVA decomposition of f . The error is

µ̂− µ =
∑
|u|>0

1

n

n∑
i=1

fu(xi) ≡
∑
|u|>0

µ̂u

where the sum is over non-empty u ⊆ {1, 2, . . . , d}. Now let Aj ⊂ {1, . . . , d} be

the set of sj indices corresponding to the input values x̃
(j)
i .

Theorem 17.10. Let f be a square integrable function on [0, 1]d. Suppose that

the RQMC rules x̃
(j)
i satisfy εjn(f) = o(n−1/2) and εjn(fufv) = o(n−1/2) for

u, v ⊆ {1, . . . , d}. Then

Var(µ̂) =
1

n

(
σ2 −

k∑
j=1

∑
u⊆Aj

σ2
u + o

(1√
n

))
+ o
(1

n

)
.

Proof. This follows from Theorem 2 of Owen (1998).

Simple Monte Carlo sampling has an error variance that is σ2/n. By us-
ing Latin supercube sampling, with RQMC points, we are able to reduce the
asymptotic variance. Specifically, those ANOVA effects σ2

u for u ⊆ Aj are

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.10. Randomized Halton sequences 121

asymptotically removed from the variance. ANOVA effects σ2
u with u∩Aj 6= ∅

and u∩Aj′ 6= ∅ for j 6= j′ are handled no better or no worse than under simple
Monte Carlo.

While LSS can reduce the constant in the variance of µ̂, it does not improve
the rate in n. To get a large reduction in the constant, we would need to
arrange for the groups of inputs randomized together to contain the bulk of the
interactions in f .

Latin hypercube sampling corresponds to Latin supercube sampling with
singleton sets Aj = {j}, for j = 1, . . . , d. In LHS the asymptotic variance comes
from all the interactions in f , that is σ2

u for |u| > 2.
Theorem 17.10 shows how best to take advantage of Latin supercube sam-

pling. Where subject matter knowledge and computational convenience allow,
we should arrange for the variables with the strongest interactions to be grouped
together within the same subset Aj . The emphasis should be on grouping to-
gether the variables with strong low order interactions, because the asymptotic
advantage of RQMC for the higher order interactions may require larger n to
take hold.

17.10 Randomized Halton sequences

Halton sequences have mostly been left behind by progress in lattices, digital
nets and polynomial lattice rules. They may still have a role to play, and they
do have very good discrepancy bounds.

There have been several proposals to randomize them, mostly by scrambling
their digits. Let the unscrambled Halton points be ai = (a1, . . . , ad) ∈ [0, 1]d

with

aij =

Kij∑
k=0

aijkp
−k−1
j , 0 6 aijk < pj ,

where pj is the j’th prime. The sum is finite, with Kij just large enough that

p
Kij+1
j > i. Perhaps the most straightforward way to randomize these points is

to take

xij =

Kij∑
k=0

πj(aijk)p−k−1
j + p

Kij−2
j Uij , 0 6 aijk < pj , (17.20)

where πj is a uniform random permutation of (0, 1, . . . , pj−1), Uij ∼ U(0, 1) and
all the πj and Uij are independent. That is, the same permutation is used for
all of the digits in the j’th variable. There have been many efforts to find good
deterministic permutations πj . Some of those are in §15.5. However, making
the permutations random gives unbiased estimates suitable for replication.

Another very innovative randomization due to Wang and Hickernell (2000)
uses the von Neumann-Kakutani transformation in base pj . Figure 17.10 shows
this transformation in bases p1 = 2 and p2 = 3. For the radical inverse function
φb(i) in base b > 2, the value φb(i + 1) is a deterministic function of φb(i).

© Art Owen 2019 do not distribute or post electronically without author’s
permission

122 17. Randomized quasi-Monte Carlo

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

von Neumann−Kakutani, p=2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

von Neumann−Kakutani, p=3

x[
i+

1,
2]

Figure 17.10: These are von Neumann-Kakutani transformations from [0, 1] to
[0, 1]. The left panel plots φ2(i + 1) versus φ2(i) for integers i > 0. The right
panel shows φ3(i+ 1) versus φ3(i).

Write it φb(i + 1) = vnkb(φb(i)). They choose their first point x1 ∼ U(0, 1)d.
Then, for i > 2 they take xi+1,j = vnkpj (xij). Each xi ∼ U(0, 1)d. One way
to implement it, is to solve for Nj such that φpj (Nj)

.
= x1j for j = 1, . . . , d and

then take xij = φpj (Nj + i− 1). If x1j would really be random then Nj might
not be bounded, but rounding xij to machine precision will give a finite Nj .
This random start Halton can produce unwanted stripes (Chi et al., 2005).

Matoušek (1998) considers nested uniform scrambling (component j scram-
bled in base pj , the j’th prime). He numerically evaluates mean squared dis-
crepancy. Scrambling does not offer a consistent advantage or disadvantage for
the dimensions and samples sizes he investigates.

Ökten et al. (2012) make a study of scrambled Halton sequences. They
compare mean square discrepancy (Warnock’s formula) at n = 100 as well as

accuracy for larger n on a standard test integrand f(x) =
∏d
j=1(|4xj − 2| +

aj)/(1+aj) for several different vectors a = (a1, . . . , ad) and dimensions d. One
of their conclusions is that the simple scramble in (17.20) is hard to beat. They
find that it gives results that are at least competitive with and perhaps better
than purpose built deterministic scrambles.

17.11 RQMC and variance reduction

Randomized quasi-Monte Carlo sampling is a kind of variance reduction method.
It can be combined with other variance reduction methods, such as control
variates, antithetic sampling, and importance sampling.

Consider a control variate h(x) ∈ RJ for which
∫
h(x) dx = θ is known.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.11. RQMC and variance reduction 123

Using RQMC points xi, we may construct the unbiased estimate

µ̂β =
1

n

n∑
i=1

(
f(xi)− βTh(xi)

)
+ βTθ

of µ =
∫
f(x) dx.

The optimal coefficient is

βopt
n = CovRQMC(h̄, h̄)−1CovRQMC(h̄, f̄) where

h̄ =
1

n

n∑
i=1

h(xi) and f̄ =
1

n

n∑
i=1

f(xi),

and the covariances are with respect to the randomizations in the RQMC points
xi. The optimal value of β can be arbitrarily different from the one in plain
Monte Carlo and it ordinarily changes with n. The usual regression formula
for estimating β estimates the optimal value for MC, not for RQMC. We can
estimate β̂opt

n for RQMC by using independent replicates of the RQMC points
as described in Hickernell et al. (2005).

A common reason for the difference is as follows. The variance of µ̂ un-
der ordinary Monte Carlo sampling may be dominated by low order ANOVA
components or low order terms in a Fourier, wavelet or Walsh expansion (as in
§16.4 and §15.13). A good control variate is then one that correlates with those
low order components to allow us to remove them as a source of variance. In
RQMC sampling, we often get very accurate results for low order terms and
then have an error variance dominated by somewhat higher order terms, per-
haps the lowest order ones not well handled by the RQMC points. In that case,
a good control variate h is one whose higher order components correlate well
with those of f .

In a numerical example of Hickernell et al. (2005, Table 4), the variance
reduction from using both RQMC and control variates is smaller than the prod-
uct of their individual variance reduction factors. In that 16 dimensional option
valuation problem, an RQMC method reduced variance by a factor of 142. The
best of four control variate strategies, all based on the close connection between
geometric means and arithmetic means for an Asian call option, reduced vari-
ance by a factor of 450. Combining the control variate strategy with RQMC
sampling reduced variance by about 1800 fold, better than either method indi-
vidually, but far short of 142× 450. A different control variate strategy, which
was not the best for MC, yielded a variance reduction of 3600 fold when used
with RMQC.

It is possible to construct examples for which a control variate is very useful
for RQMC. But in real applications it can be very hard to identify a control
variate whose very high order behavior matches that of f . It is extremely rare
to find a control variate that is as good as the geometric average option is for
a problem of valuing an arithmetic option. Plain Monte Carlo control variates
are comparatively easier to find because it is easier to understand and match
the coarse low order behavior of f and h.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

124 17. Randomized quasi-Monte Carlo

The combination of RQMC with antithetic sampling faces similar issues.
Antithetic sampling yields exact answers for the odd part of f while doubling
the variance for the even part of f . Randomized QMC provides very accurate
integration for low dimensional coarse parts of the integrand while yielding more
like the Monte Carlo rate on high dimensional and high frequency parts of the
integrand. As a result, antithetic sampling with RQMC points will be of great
benefit if the high order and high frequency parts of f are dominated by their
odd parts. A combination of antithetic sampling with RQMC is then ideally
suited for f if its high order and high frequency components are approximately
odd functions.

Caflisch et al. (1997, §6.1) study a 360 dimensional integrand motivated by
mortgage valuation. By comparing the variances of Latin hypercube sampling
and plain Monte Carlo they estimate that the integrand has roughly 99.98% of
its variance in its additive component. Comparing Monte Carlo with antithetic
sampling they estimate that roughly 99.96% of the variance comes from its odd
part. The integrand is therefore nearly a sum of odd one dimensional functions.
The higher dimensional components were not overwhelmingly odd functions,
because the combination of antithetic sampling with Latin hypercube sampling
was not much more effective than Latin hypercube sampling on its own.

Somewhat better results are available with local antithetic sampling. If
f is nearly linear within each small rectangular patch, then local antithetic
versions of stratified sampling from §10.2 reduce the variance from O(n−1) to
O(n−1+2/d) in d dimensional problems. A similar reduction is available for
scrambled net quadrature. Given sufficient smoothness, a locally antithetic
version of randomized nets yields mean square errors of O(n−3−2/d+ε) in d
dimensional problems compared to O(n−3+ε) for scrambled nets. See Owen
(2008). Much better asymptotic orders are obtainable via higher order nets
of §15.12.

17.12 Singular integrands

Many problems involve finding the expectation of an unbounded, that is sin-
gular, integrand. For example, Gaussian random variables are unbounded and
integrands on [0, 1]d constructed by transforming to a multivariate Gaussian
vector may well be unbounded too. That is common in financial valuation
problems (Glasserman, 2004). Kollig and Keller (2006) describe some singular
integrands in computer graphics. The function f may diverge to ±∞ in places
and yet µ =

∫
f(x)p(x) dx is well defined so long as

∫
|f(x)|p(x) dx < ∞.

These problems then have integrable singularities. If also
∫
f(x)2p(x) dx <∞,

then Monte Carlo sampling of xi ∼ p will lead to an estimate of µ with root
mean squared error O(1/

√
n).

Plain QMC is not designed for such problems. If f defined on [0, 1]d is
unbounded then it has infinite variation in the sense of Hardy and Krause.
Averages of f over a low discrepancy point set could fail to converge to µ =∫

[0,1]d
f(x) dx. Randomized QMC can work well on singular integrands. If

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.12. Singular integrands 125

∫
[0,1]d

f(x)2 dx < ∞ then sampling along digital sequences, such as Sobol’s or

Faure’s, with a nested uniform scramble attains Var(µ̂) = o(1/n). This rate
holds whether or not we know where the singularity or singularities are.

Very often the singularities arise on the boundary of [0, 1]d and then we can
study the problem in more detail. We look first at how QMC can work with such
singularities. Despite the potential noncovergence of QMC, Ilya Sobol’ noticed
by the early 1970s that his colleagues were using QMC on singular integrands
without any apparent problems, and found an explanation: sometimes QMC
points manage to avoid the area of the singularity.

Suppose that there is a region K ⊂ [0, 1]d, such that |f | is bounded on K
and all of the QMC points xi are inside K. Next, let f̃ be a function on [0, 1]d

with VHK(f̃) <∞ that satisfies f̃(x) = f(x) whenever x ∈ K. Then

|µ̂− µ| =
∣∣∣∣ 1n

n∑
i=1

f̃(xi) + (f(xi)− f̃(xi))−
∫

[0,1]d
f̃(x) + (f(x)− f̃(x)) dx

∣∣∣∣
=

∣∣∣∣ 1n
n∑
i=1

f̃(xi)−
∫

[0,1]d
f̃(x) + (f(x)− f̃(x)) dx

∣∣∣∣
6

∣∣∣∣ 1n
n∑
i=1

f̃(xi)−
∫

[0,1]d
f̃(x) dx

∣∣∣∣+

∫
[0,1]d

|f̃(x)− f(x)|dx

6 D∗n(x1, . . . ,xn)VHK(f̃) +

∫
Kc

|f̃(x)− f(x)|dx.

Now, given a sequence of regions Kn containing x1, . . . ,xn and a corresponding
sequence of extensions f̃n, QMC will converge to the right answer if

lim
n→∞

D∗n(x1, . . . ,xn)VHK(f̃n) +

∫
Kc

n

|f̃n(x)− f(x)|dx = 0.

Sometimes the integral has a singularity at the origin or along the ‘lower
boundary’ of [0, 1]d. Points xi can avoid the singularity by being confined to

Korig
min (ε) = {x ∈ [0, 1]d | min

16j6d
xj > ε},

Korig
prod(ε) = {x ∈ [0, 1]d |

∏
16j6d

xj > ε}, or

Korig
max(ε) = {x ∈ [0, 1]d | max

16j6d
xj > ε}.

(17.21)

For d = 1, these all reduce to [ε, 1].

For d > 1, we may have to rearrange our integrand to ensure that the corner
containing the singularity is placed at the origin. If the singularity can be at

© Art Owen 2019 do not distribute or post electronically without author’s
permission

126 17. Randomized quasi-Monte Carlo

●

●

●

Extensible

●

●

●

Extensible Not extensible

Figure 17.11: The first panel shows a Sobol’-extensible region above a hyperbola.
The second panel shows a Sobol’-extensible circle. Their anchors c are marked
with a solid point and two bounding boxes are drawn. The third panel shows a
non-extensible region that omits a strip along a diagonal.

any of the corners or along any of the boundaries then we may instead use

Kcorn
min (ε) = {x ∈ [0, 1]d | min

16j6d
min(xj , 1− xj) > ε},

Kcorn
prod(ε) = {x ∈ [0, 1]d |

∏
16j6d

min(xj , 1− xj) > ε}, or

Kcorn
max (ε) = {x ∈ [0, 1]d | max

16j6d
min(xj , 1− xj) > ε}.

(17.22)

For d = 1, these all reduce to [ε, 1− ε].
Sobol’ (1973a) found a way to extend f defined on certain regions K ⊂ [0, 1]d

to f̃ on [0, 1]d keeping VHK(f̃) under some control. The set K ⊂ [0, 1]d is Sobol’
extensible if there is some anchor point c ∈ [0, 1]d such that the hyper-rectangle

R(x) ≡
d∏
j=1

[min(xj , cj),max(xj , cj)]

satisfies R(x) ⊂ K for all x ∈ K. The region R(x) is a rectangular bounding
box or rectangular hull of the points x and c. Figure 17.11 shows two Sobol’-
extensible regions and one other that is not extensible. The regions in (17.21)
and (17.22) are Sobol’ extensible.

If the partial derivatives of f taken once with respect to each component of
x is continuous on K, then Sobol’s extension can be made. We illustrate it for
d = 2. For the more general treatment see Basu and Owen (2015). For x ∈ K
we can write

f(x) = f(c) +

∫ x1

c1

∂f(x)

∂x1
dx1 +

∫ x2

c2

∂f(x)

∂x2
dx2 ±

∫
R(x)

∂2f(x)

∂x1∂x2
dx.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.12. Singular integrands 127

The sign in the final integral is positive if xj > cj for an even number of j, that
is for zero or two such j, and is negative otherwise. The two univariate integrals
must be interpreted with a similar care on their signs. For instance, if c1 > x1,
then the first one is −

∫ c1
x1
∂f(x)/∂x1 dx1. For d = 2, the Sobol’ extension of f

to x 6∈ K is

f̃(x) = f(c) +

∫ x1

c1

1{(z1, x2) ∈ K}∂f((z1, x2))

∂z1
dz1

+

∫ x2

c2

1{(x1, z2) ∈ K}∂f((x1, z2))

∂z2
dz2 ±

∫
R(x)

1{z ∈ K}∂
2f(z)

∂z1∂z2
dz.

For x ∈ K, the fundamental theorem of calculus gives f̃(x) = f(x). Points
x 6∈ K don’t add any variation to f̃ beyond what it must have to match f on
K. For instance, the Vitali variation of f̃ is

∫
K
|∂df(x)/

∏d
j=1 ∂xj |dx.

Sobol’ (1973a) showed that some of his sequences avoid a hyperbolic region,

Korig
prod around the origin. An unfortunate typo in that paper makes it look he

is considering Korig
min . For d = 1, he finds that the van der Corput sequence

(not including x = 0) integrates x−A with error O(nA−1 log(n)) for A < 1. For
larger d, products of negative powers of xj are integrated correctly by Sobol’
sequences as n→∞.

Halton points are quite good at avoiding the origin, assuming that they don’t
start with φpj (0). For xij to come close to the origin, i must be a multiple of a
power of pj , the j’th prime. For xi to come close to 0, i must be a multiple of
powers of all the primes p1, . . . , pd. There are details in Theorem 3.1 of Owen
(2006a).

Uniform random points are good at avoiding small regions containing inte-
grable singularities. If they were not, then the law of large numbers could fail.
The next Lemma shows that for RQMC points there can be only finitely many
n for which one or more of the xi was within Korig

prod(Cn−r) when r > 1.

Lemma 17.1. For i = 1, . . . , n, let xi ∼ U[0, 1]d. Then for C > 0 and r > 1,

P
(

min
16i6n

d∏
j=1

xij 6 Cn−r infinitely often

)
= 0.

Proof. This is part of Lemma 4.1 of Owen (2006a).

Lemma 17.1 follows from the Borel-Cantelli theorem and it does not require
that xi be independent of each other. The same holds for all 2d corners of [0, 1]d

and so RQMC points also remain within Kcorn
prod(Cn−r) all but finitely often. We

can get rates for some RQMC points, using just that avoidance behavior, their
discrepancy, and assumptions about the integrand.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

128 17. Randomized quasi-Monte Carlo

Definition 17.3. The function f on [0, 1]d has corner singularities no worse

than
∏d
j=1 x

−Aj

j if∣∣∣∣ ∂|u|f(x)∏
j∈u ∂xj

∣∣∣∣ 6 B

d∏
j=1

min(xj , 1− xj)−Aj−1{j∈u} (17.23)

holds for all u ⊆ {1, 2, . . . , d}, some Aj ∈ (0, 1) and some B <∞.

We need Aj < 1 because other wise f might not be integrable. We assume
that Aj > 0 because otherwise f might not be singular.

Theorem 17.11. Let x1, . . . ,xn ∼ U[0, 1]d with E(D∗n(x1, . . . ,xn)) = O(n−1+ε)
for all ε > 0. If f satisfies (17.23), then

E
(
|µ̂− µ|) = O(n−1+ε+maxj Aj).

Proof. This is Theorem 5.7 of Owen (2006a).

When one or more of the Aj > 1/2 then f does not necessarily have finite
variance. The Monte Carlo rate in that case is not usually known, (though
perhaps we could find it, see Exercise 17.8). Theorem 17.11 gives a known
rate. It is better than the MC rate when maxj Aj < 1/2. Some slowly growing
singularities derived by inverting the Gaussian CDF can satisfy (17.23) for any
Aj > 0. Then the RQMC expected error can be O(n−1+ε) for any ε > 0.

Isolated point singularities, even at unknown locations, can be handled by
RQMC if they are not too severe. Owen (2006b) considers singularities at
unknown points z ∈ [0, 1]d that are ‘no worse’ than ‖x− z‖−Ap for 1 < p <∞.
For such integrands, RQMC estimates

∫
[0,1]d

f(x) dx with

E(|µ̂− µ|) = O(n(−1+ε)(d−A)/d).

The proof uses Sobol’ extensions from sets Ku = {x ∈ [0, 1]d | ‖x−z‖p > ε}∩Ou
for all 2d orthants Ou ≡ {x ∈ [0, 1]d | xj > zj ⇐⇒ j ∈ u} defined by
u ⊆ {1, 2, . . . , d}.

Very little is known about (R)QMC for singularities along arbitrary man-
ifolds. For instance, for a singularity along {(t, 1 − t) | 0 6 t 6 1} ⊂ [0, 1]2,
Figure 17.11 shows a region that we might wish to extend f from. That region is
not Sobol’-extensible so some other construction of f̃ would be necessary. Basu
and Owen (2018) consider some approaches to this problem.

Hartinger et al. (2005) study corner avoidance properties of QMC points.
Hartinger and Kainhofer (2006) consider QMC integration of f(x)p(x) for in-
tegrands f with singularities and non-uniform probability density functions p.

17.13 (R)QMC for MCMC

Here we consider what happens if we try to use QMC methods in Markov chain
Monte Carlo (MCMC). Then we extend it to RQMC.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.13. (R)QMC for MCMC 129

QMC and MCMC are in some ways opposites. QMC is done with n points
in d dimensions, with n� d, possibly d = 1, and studied as n→∞. The inputs
can be arranged in an n × d matrix with a row per sample and a column per
variable. In Bayesian applications, MCMC is done with some large number n
of generated points and R replicated chains, perhaps with R = 1. For R = 1,
MCMC is estimating an integral by just one average over n data points. If
we picture the inputs to MCMC as one row per sample and one column per
variable used they form an R × ns matrix where s is the average number of
uniform random variables needed to advance the Markov chain one step. Then
because R � ns, the input shape for MCMC looks like the transpose of what
we use for QMC.

The justifications for QMC and MCMC are also different. QMC uses dis-
crepancy of a collection of points. MCMC uses ergodicity of a sequence.

The first thing to realize is that the combination, done badly, would fail
dramatically. Caflisch and Moskowitz (1995) described replacing the stream of
random numbers in MCMC by a van der Corput sequence. For random walk
Metropolis, a simple proposal like xi → xi + Φ−1(u2i−1) could be followed by
an acceptance-rejection decision based on whether u2i is below the Hastings
ratio. Because large u2i−1 are followed by small u2i and vice versa in the van
der Corput sequence, we could find that positive proposed changes are usually
accepted while negative ones are usually rejected, producing a random walk that
drifts off to infinity instead of being stationary.

If we are to replace u1, u2, . . . from a random number generator by a QMC
sequence, then it is clear that having D∗n(u1, . . . , un)→ 0 is not enough, because
that holds for van der Corput. To fix the that flaw with the van der Corput
sequence we would also want D∗n(v1,v2, . . . ,vn) → 0 for vi = (ui, ui+1). More
generally, we want

D∗n(v1,v2, . . . ,vn)→ 0, for vi = (ui, ui+1, . . . , ui+k−1) ∈ [0, 1]k (17.24)

to hold for all k > 1. An infinite sequence u1, u2, . . . that satisfies (17.24) is
completely uniformly distributed, or CUD. Definition (17.24) uses over-
lapping k-tuples. Chentsov (1967) shows that we can also define CUD via
non-overlapping k-tuples, with vi = (uk(i−1)+1, . . . , uki).

One of the definitions of a random sequence in Knuth (1998) is that it be
CUD. Some of the criteria for random number generators in Chapter 3 involve
the full period of the RNG having uniformly distributed k-tuples, though that
is only possible for k small compared to the period of the generator. The idea
behind putting QMC into MCMC is to use the entire period of an RNG. Of
course, one would then need to choose a small RNG.

For finite n, CUD sequences are constructed using similar algorithms to those
used for RNGs. Tribble (2007) uses some Korobov points, which are small
congruential RNGs, as well some small linear feedback shift register (LFSR)
generators. Chen et al. (2012) present some LFSRs on 2m points for each
integer m from 10 to 30.

For RQMC, we would use a random sequence ui instead of a deterministic

© Art Owen 2019 do not distribute or post electronically without author’s
permission

130 17. Randomized quasi-Monte Carlo

one. An infinite random sequence ui is weakly CUD or WCUD if

P(D∗n(v1,v2, . . . ,vn)→ 0) = 1, for vi = (ui, ui+1, . . . , ui+k−1) (17.25)

holds for all k > 1. Tribble and Owen (2008) give some constructions of WCUD
sequences. A Cranley-Patterson rotation of a CUD sequence is WCUD.

Theoretical understanding of MCMC driven by (W)CUD points is more
complicated than when the driving sequence of ui has IID elements. The k-
tuples vi have some negative dependencies which means that the output of the
simulation is not Markov, just as RQMC for finite d produces outputs that are
not independent. We saw the use of non-Markov simulations for MCMC in
adaptive MCMC.

What is known about (R)QMC inside MCMC is that it is consistent, that is,
various laws of large numbers have been proved for it. Chentsov (1967) proved
one for sampling a Markov chain on a discrete space by inversion. Owen and
Tribble (2005) handled discrete Markov chains by Metropolis-Hastings. Chen
et al. (2011) considered MCMC for continuous random variables by Metropolis-
Hastings and by Gibbs. Empirically, placing QMC within MCMC is often seen
to give a better convergence rate, especially for Gibbs sampling which avoids
the step discontinuities that Metropolis-Hastings has.

Chen (2011) proves that a better rate is possible, but under much stronger
assumptions than those rates have been observed empirically. Chen et al. (2016)
introduce a herded Gibbs sampler for problems on Markov random fields. It is
deterministic and they show O(1/n) convergence. Schwedes and Calderhead
(2018) obtain variance nearly O(1/n2) using QMC within parallelized MCMC.

17.14 Array-RQMC

Array-RQMC uses RQMC methods to sample a large number n of Markov
chains through T time steps each. For full details, see L’Ecuyer et al. (2018).
At time t > 1, chain i visits

xi,t = Ψ(xi−1,t,ui,t), ui,t ∈ (0, 1)d,

for an update function Ψ(·, ·). There is a common starting value xi,0 = x0 for
all of the chains, and the quantity of interest is

µ = E
(T∑
t=1

ct(xi,t)

)
, for ui,t

iid∼ U(0, 1)d. (17.26)

For instance, x might describe the state of a inventory system or a queue
of customers at time t and ct(·) could be a corresponding cost function, per-
haps discounting future costs using an interest rate. Policy changes would then
amount to changing Ψ, and we might want to know what the expected cost of
a proposed policy is. Puchhammer et al. (2019) report using array-RQMC on a
chemical kinetics problem with τ -leaping. In that case only the last state needs
to be summarized and so ct = 0 for all t < T .

© Art Owen 2019 do not distribute or post electronically without author’s
permission

17.14. Array-RQMC 131

While (17.26) is defined in terms of plain MC sampling, we can instead
apply the variance reduction or RQMC methods to improve the quality of an
estimate. The most straightforward way to apply RQMC is to use n points
vi ∈ (0, 1)Td. The first d components of vi are then ui,1 and more generally
vi = (ui,1,ui,2, . . . ,ui,T). That is, we take

µ = E(f(v)), v ∼ U(0, 1)Td

for v = (u1,u2, . . . ,uT) with f incorporating both the costs ct and the updates
Ψ. The problem with this plain approach is that it may require a very high
dimensional RQMC point set.

We could instead use Latin supercube sampling (LSS) of §17.9, with T inde-
pendent reorderings of some d-dimensional RQMC points. The reordering for
time t would be used to update all n Markov chains from time t− 1. We could
even use d independent reorderings of a T -dimensional RQMC point set. The
j’th reordering for j = 1, . . . , d would then give the j’th components of ui,t for
t = 1, . . . , T , though that involves more difficult bookkeeping. Unfortunately,
LSS only gives the plain MC rate, O(n−1/2). If there are important interac-
tions between variables receiving different random reorderings, then LSS only
averages those interactions at the MC rate.

What is missing from LSS is a way to have the updates at step t be almost
independent of the prior state xi,t−1 ∈ Rs. That prior state captures everything
relevant about the prior update variables ui,t′ for t′ < t, and so updating the
chains nearly independently of their prior states should be effective.

Array-RQMC has a simple way to fill this weakness in LSS when s = 1,
that is, when xi,t−1 is scalar. It uses low discrepancy points wi,t = (ai,t,ui,t) ∈
(0, 1)d+1, for i = 1, . . . , n. The first component ai,t is used to decide which
simulated Markov chain gets updated by which of the ui,t. The k’th largest
xi,t−1 gets updated by ui(k),t where ai(k),t is the k’th largest of the ai,t.

The points wi,t are RQMC points with a different, independent randomiza-
tion at each time point t. This runs counter to the admonition in §17.9 that such
points do not uniformly sample. The situation is not precisely the same. The
points ui,t and ui, t′ for t′ 6= t do not necessarily update the same Markov chain,
because of the way the ordering develops. It may be enough for the values xi,t−1

at time t to have low discrepancy with respect to the true distribution at that
time. Then the specific random inputs that produced them can be forgotten.

When s > 1, then it is more challenging to decide which of the Markov chains
should be updated with a given input ui,t at time t−1. One approach is to take
wi,t ∈ (0, 1)s+d and make the match based on some sort of similarity between
points x at time t− 1 and the coordinates of wi,t. Because s-dimensional space
does not have a natural ordering for s > 1, there are many ways to do this. See
Puchhammer et al. (2019).

Gerber and Chopin (2015) develop a sequential quasi-Monte Carlo sampler
that can be viewed as a form of array-RQMC. We will revisit it in Chapter
xxx on sequential Monte Carlo and particle methods. They smoothly transform
xi,t−1 ∈ Rs to (0, 1)s via a logistic function. Then they run a Hilbert space-
filling curve through [0, 1]s. That is a continuous curve mapping [0, 1] onto

© Art Owen 2019 do not distribute or post electronically without author’s
permission

132 17. Randomized quasi-Monte Carlo

[0, 1]s. Each point xi,t−1 lies on that curve and so they can be sorted in order
of their pre-image in [0, 1] under the Hilbert curve. The updates come from the
last d components of points wi,t ∈ (0, 1)1+d, after sorting them to have their
first component in the same order as the Hilbert sort of xi,t−1.

The empirical results for array-RQMC so far outstrip what has been proved
theoretically. Gerber and Chopin (2015) showed that their method has variance
o(n−1), using scrambled nets for their RQMC points. L’Ecuyer et al. (2008)
show that for scalar x’s it is possible to achieve variance of O(n−3/2) by a
version of array-RQMC.

Array-RQMC builds on the quasi-random walk methods of Lécot and Ogawa
(2002), which are a form of array-QMC. They use unrandomized QMC and
a reordering strategy to solve problems in chemistry where particles undergo
diffusion and convection. They find empirical error rates that are better than
for plain Monte Carlo. Examples 1, 2 and 3 in dimensions 1, 2 and 3 respectively
attain error rates n−0.73, n−0.64 and n−0.57. Changes in problems, methods and
sample sizes could make these rates better or worse.

Chapter end notes

L’Ecuyer et al. (2010) make a study of the distribution of RQMC estimates
for randomly shifted lattice rules. They include an analysis of one and two
dimensional problems and some examples in higher dimensions. They especially
note that no central limit theorem applies to the individual estimates.

The comparison between Cranley-Patterson rotations and digital shifts for
d = 1 is from an observation by F. J. Hickernell.

Bootstrap t

We would like a confidence interval for µ based on a small sample R of IID
random variables µ̂1, . . . , µ̂r with mean µ. Ideally the confidence interval would
not require µ̂r to have a distribution in a known parametric family of distribu-
tions. Unfortunately, Bahadur and Savage (1956) describe a sense in which it
is impossible to get such a nonparametric confidence interval for the mean of
a random variable. We can however get confidence intervals asymptotic in R.
The best of these is the bootstrap t method of Efron (1982) described here. The
asymptotics for R presented here describe finite R much more closely than the
Koksma-Hlawka asymptotics do.

Suppose that we have independent and identically distributed estimates
µ̂1, . . . , µ̂R, unbiased for µ. We can form an asymptotic 99% confidence interval
for µ as

µ̂pool ±
2.58s√
R
. (17.27)

© Art Owen 2019 do not distribute or post electronically without author’s
permission

End Notes 133

for

µ̂ =
1

R

R∑
r=1

µ̂r and s2 =
1

R− 1

R∑
r=1

(µ̂r − µ̂pool)
2.

If the distribution of µ̂r has enough moments and is not supported on integer val-
ues or some other lattice in R, then P(|µ̂pool−µ| > 2.58s/

√
R) = 0.99+O(1/R)

Hall (1988). The implied constant in O(·) depends on the third and fourth mo-
ments of µ̂r. Replacing 2.58 by the 0.995 quantile of the t distribution on R− 1
degrees of freedom helps for small R but does not change the convergence rate.

The interval (17.27) is derived assuming that µ̂r have a Gaussian distribu-
tion, in which case using the t distribution removes the O(1/R) coverage error
entirely. Bootstrap confidence intervals are designed without assuming a spe-
cific distribution. In the percentile bootstrap, we sample µ̂∗1, µ̂∗2, . . . , µ̂∗R with
replacement from (µ̂1, µ̂2, . . . , µ̂R) and compute

µ̂∗pool =
1

R

R∑
r=1

µ̂∗r .

We do this independently B � 1 times, getting µ̂∗1pool, µ̂
∗2
pool, . . . , µ̂

∗B
pool. We then

sort the values into µ̂
∗(1)
pool 6 µ̂

∗(2)
pool 6 · · · 6 µ̂

∗(B)
pool . The central 99% of these is an

approximate 99% percentile confidence interval for µ. That is, we use

[µ̂
∗(0.005B)
pool , µ̂

∗(0.995B)
pool].

We might have to round 0.005B down to an integer or 0.995B up to an integer,
or because B is under our control, we can choose for B a multiple of 200, such
as 105 or 106. A large value like this is reasonable when we want the 0.5 and
99.5 percentiles. The coverage accuracy of the bootstrap confidence interval is
usually studied in the B → ∞ limit, especially when it is inexpensive to take
large B. The coverage error is however still O(1/R), or O(1/R + 1/

√
B) for

finite B.
The bootstrap t method of Efron (1982) generates µ̂∗1, µ̂

∗
2, . . . , µ̂

∗
R as before

by resampling the original data. It then computes

t∗ =
µ̂∗pool − µ̂pool

s∗/
√
R

, for s∗2 =
1

R− 1

R∑
r=1

(µ̂∗r − µ̂∗pool)
2.

In the bootstrap t method we compute t∗1, t∗2, . . . , t∗B from the resampled
data, again for B = 105 or more, sort them as t∗(1), t∗(2), . . . , t∗(B), and record
t∗(0.005B) and t∗(0.995B). As B → ∞ the distribution of the t∗ becomes the
exact distribution of the t statistic in a world where our QMC estimates had
the U{µ̂1, . . . , µ̂R} distribution. For the bootstrap t we reason that t∗ under
resampling has almost the same distribution that t has under the unknown
distribution of µ̂r. Setting

0.01 = P
(
t∗(0.005B) 6 t 6 t∗(0.995B)

)
= P

(
t∗(0.005B) 6

µ̂pool − µ
s/
√
R

6 t∗(0.995B)
)

© Art Owen 2019 do not distribute or post electronically without author’s
permission

134 17. Randomized quasi-Monte Carlo

and solving we get

µ̂pool −
t∗(0.995B)s√

R
6 µ 6 µ̂pool −

t∗(0.005B)s√
R

(17.28)

as the bootstrap t 99% approximate confidence interval for µ.
Hall (1988) finds expressions for the coverage error in the bootstrap t and

other nonparametric approximate confidence intervals. The coverage error in
central confidence intervals is (A+Bγ2 +Cκ)/R+ o(1/R2), where γ = E((µ̂r−
µ)3)/Var(µ̂r)

3/2 and κ = E((µ̂r−µ)4)/Var(µ̂r)
2−3, are the skewess and kurtosis

respectively of µ̂r. The values of γ and κ are hard to know for µ̂r from RQMC.
For MC with n observations, γ(µ̂) = γ(f(x))/

√
n and κ(µ̂) = κ(f(x))/n.

Alone among the nonparametric methods that Hall considers, the bootstrap
t has A = 0. The others have A < 0 which makes then tend to cover µ less
often than they should. If f(x) has a Gaussian distribution, then γ = κ = 0
making the coverage error O(1/R2). Hall (1988) also describes a sense in which
the bootstrap t chooses the right length for its confidence intervals.

Extreme cases for coverage error have γ2 zero or large and κ below, equal to,
or larger than the 0 we would have from a Gaussian distribution. That makes
for 6 possibilities, but it is impossible to have an extremely large γ2 with a small
κ, so there are really 5 possibilities.

Owen (1992) simulates 95% confidence intervals for seven distributions (given
in Exercise 17.1) including examples of all five (γ2, κ) types and nine different
confidence interval methods. The bootstrap t had the most reliable coverage of
all methods tested. The coverage was reasonably good for sample sizes n > 4
except for log normally distributed data where none of the methods did well.
The intervals were very long unless n > 6 and they had quite variable length
unless n > 7. Additionally, Hall’s asymptotic formula for coverage error was
accurate already for n = 18 (except for lognormal data). Confidence intervals
can also be judged by the coverage level attained at their given length. By that
criterion, empirical likelhood intervals were best.

Bootstrap t confidence intervals can be very long because sometimes s∗ is
tiny. For small R, methods that do not generate some long confidence intervals
typically fail to achieve the desired coverage. When as usual, all R values of µ̂r
are distinct, and none is exactly equal to µ̂pool, then there is an R1−R chance
of getting s∗b = 0 and t∗b = ±∞. We must choose R so that R1−R � 0.01 in
order to get finite values for t∗(0.005B) and t∗(0.99B), which leads to R > 6 or
perhaps R > 7.

A slightly sharper version of the bootstrap uses B = 99,999 or some other
multiple of 200, less one. The B bootstrap values of t∗ partition the real line
into B intervals, two of which have infinite length. Some will have length 0
due to ties among the t∗b values b = 1, . . . , B. We can then define t∗(0.005B)

and t∗(0.995B) as the end points from the union of the central 0.99B of these
intervals. See Davison and Hinkley (1997). For large enough B it won’t make
a practical difference.

For small R we can enumerate all of the different bootstrap samples t∗ in a
combinatorial problem. There are

(
2R−1
R

)
of them with unequal weights.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

End Notes 135

Scrambles

Nested uniform scrambling of digital nets and sequences was introduced in Owen
(1995). The digital scramble was mentioned by L’Ecuyer and Lemieux (2002)
who attribute it to R. Couture. A taxonomy of scrambles appears in Owen
(2003).

The generalized Faure and generalized Niederreiter sequences of Tezuka
(1995) are non-random scrambles of those sequences designed to improve their
performance. They take the form of a random linear scramble of Matoušek
(1998), but use a deterministic choice for Mkh and they take Ck = 0. As a
result, random linear scrambling is simultaneously a randomization of gener-
alized Faure/Niederreiter sequences and a derandomization of nested uniform
scrambling.

The I-binomial scramble of Tezuka and Faure (2003) is a further derandom-
ization of random linear scrambling that uses O(k) numbers to scramble k digits
instead of O(k2). Owen (2003) presents an affine striped matrix scrambling that
induces a local antithetic sampling pattern in the generated points. That leads
to an improved convergence rate for one dimensional problems and for the one
dimensional main effects in higher dimensions. But it does not improve the
convergence rate for d > 2 overall.

L’Ecuyer and Lemieux (2005) report on a strategy by Morohosi to cache
random seeds to reduce the space requirement of nested uniform sampling, by
instead regenerating permutations as needed. They link to a web page that is
no longer present.

Dimension reduction methods

Moskowitz and Caflisch (1996) presented the Brownian bridge construction for
QMC evaluation of integrals involving a discretely sampled Brownian motion.
To cover the time interval [0, T], they sample at times T , T/2, T/4, 3T/4 et
cetera, continuing at times formed by multiplying T by numbers of the van der
Corput sequence. The Brownian bridge construction also appears in Chapter 2
of Buslenko et al. (1966) which was written by I. M. Sobol’. That chapter in-
cludes MC and QMC but the Brownian bridge example there uses MC. Morokoff
(1998) develops Brownian bridge sampling for stochastic differential equations
of the form

dS(t) = (a(t) + b(t)S) dt+ σ(t) dB(t)

where B(t) is Brownian motion.
Acworth et al. (1997) proposed the principal components construction for

problems of valuing financial options under a geometric Brownian motion model.
There are also spatial versions of the principal components decomposition for
regions in two or three or more dimensions. Heat or water might be flow-
ing through a region and meeting a spatially random resistance as it moves.
One can simulate that randomness by Monte Carlo and then measure some
quantity of interest, often determined by solving a partial differential equa-
tion over the region of interest. Repeating the process several times gives an

© Art Owen 2019 do not distribute or post electronically without author’s
permission

136 17. Randomized quasi-Monte Carlo

estimate the expected value of that quantity. A zero mean Gaussian spatial
process on such a region can be written, in a Karhunen-Loève expansion, as

f(t) =
∑∞
`=1 γ`ψ`(t)z` for functions ψ`(t) random variables z`

iid∼ N (0, 1) and
coefficients γ1 > γ2 > · · · > 0. QMC or RQMC can be used on the first L
components z`. Graham et al. (2015) consider partial differential equations in
a random lognormal environment using QMC to sample their environment.

There is no reason to expect that either the Brownian bridge or the principal
component construction is necessarily best for a given application. Indeed,
Papageorgiou (2002) shows that for certain digital options the Brownian bridge
can be outperformed by the standard construction. Åkesson and Lehoczky
(2000) consider a weighted principal components method for financial problems
where future values of the security of interest should be discounted by an interest
rate. Imai and Tan (2006) present a method that searches numerically for the
best square root C of the Gaussian covariance matrix Σ.

Another difference between RQMC and MC arises in the transformations we
use to create random variables. We can sample Gaussian variables zi ∼ N (0, I)
by inverting the Gaussian CDF, or by the Box-Muller transformation. These
choices will produce estimates µ̂ with identical mean and identical variance in
MC but they will be different in general under RQMC. Many authors, e.g.,
Morokoff and Caflisch (1993), advocate for inversion. Ökten and Göncü (2011)
take the contrary view, especially for integrands that depend on the norm of
the Gaussian random vector. For even d, the norm of the Gaussian vector will
have been determined by only d/2 of the components in xi compared to all d
of them under inversion.

Padding and hybrid methods

Spanier (1995) describes a hybrid method in which deterministic quasi-Monte
Carlo points are padded out with ordinary Monte Carlo. Ökten (1996) ana-
lyzes the discrepancy of such hybrid schemes. Owen (1994) considers padding
randomized orthogonal array samples with Latin hypercube samples.

Exercises

17.1. This exercise is a mini-project to calibrate the bootstrap t for 99% inter-
vals. Consider sample sizes n = 6, 7, . . . , 30 for random variables x with these
distributions:

i) x ∼ Exp(1) (Exponential),
ii) x ∼ N (0, 1) (Gaussian),
iii) x ∼ exp(N (0, 1)) (Lognormal),
iv) x ∼ 0.25N (3, 1) + 0.75N (−1, 1) (Mixture of normals),
v) x ∼ t(4) (Student’s t),
vi) x ∼ x− 2x, 0 < x < 1 (Triangular density function), and

vii) x ∼ U(0, 1) (Uniform).

© Art Owen 2019 do not distribute or post electronically without author’s
permission

Exercises 137

In RQMC, each x is a µ̂ and n is R. The lognormal distribution is especially
challenging.

a) Write or find code to sample n numbers j∗(1), j∗(2), . . . , j∗(n) uniformly
from integers i = 1, 2, . . . , n, with replacement. (In bootstrapping x∗i will
be xj∗(i).) For n = 3, there are only 27 possible ordered samples. Sample
many times to verify that all 27 appear approximately the right number
of times.

b) For our bootstrap purposes getting observations (1, 3, 2, 1), when n = 4,
is the same as getting (1, 1, 2, 3). That is, the order in which the samples
were taken does not count. Enumerate the distinct samples for n = 4,
compute their true exact probabilities as an integer multiple of 4−4 and
compare their frequencies in sampling to their true probabilities.

c) For n = 6 and xi ∼ Exp(1), using B = 100,000 bootstrap samples, what
fraction of the time does the 99% bootstrap confidence interval contain
the true mean? Use a large number N of samples of sizes n = 6 to get
your answer. Turn in your code including the seed you used so it can be
reproduced. If necessary reduce B in order to use a large N .

d) Repeat the previous computation for the other six distributions above.
Turn in your code.

e) Repeat the previous computation for n = 7, 8, · · · , 30. Turn in your code.

f) Instead of coverage, report width calibration. Specifically for each distri-
bution and sample size n find a factor w such that

wt∗(0.005B) 6
µ̂− µ
s/
√
n

6 wt∗(0.995B)

holds with estimated probability 0.99. Such factors are commonly called
fudge factors.

g) Find fudge factors for the usual, non bootstrapped, t distribution for the
same sample sizes and distributions.

Some parts can be done by writing code that wraps the prior parts. Instruc-
tors may want to skip some parts or change recommendations for N and B or
change the subset of n values.

17.2. Prove equation (17.9) bounding the discrepancy of Cranley-Patterson
rotation.

17.3. This requires considers some positional scrambles of the Faure sequence
and therefore requires code for the Faure sequence. Exercise 17.4 is similar but
based on the more easily programmed Halton sequence.

a) Compute the first 2 components of the first 530 points of Faure’s (0, 53)-
sequence in base 53. Plot the second component versus the first for these
points.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

138 17. Randomized quasi-Monte Carlo

b) Apply a positional scramble to both components above, using a uniform
random permutation πjk for the k’th base b digit of the j’th component.
The πjk are mutually independent. For this exercise you may truncate the
expansion at 4 digits in base 53. (In applications, more digits should be ac-
counted for.) Plot the scrambled second component versus the scrambled
first.

c) Repeat the previous part but now use the same uniform random permu-
tation πj for all digits of the j’th component of the points. Take π1 and
π2 to be independent uniform random permutations of {0, . . . , 52}.

17.4. Do Exercise 17.3 with the following substitutions: Replace the first two
components of the Faure sequence by the 19’th and 20’th components of the
Halton sequence (prime bases 67 and 71). Replace the base 53 expansions by
ones in bases 67 and 71 as appropriate. Use random permutations of {0, . . . , 66}
and {0, . . . , 70} as appropriate.

17.5. xxx distn of µ̂− µ for fixed pts under cpr with/without Baker

17.6. Let the mean dimension of f on be 1 + ε for ε > 0 from its ANOVA
decomposition on [0, 1]d be 1 + ε for ε > 0. Show that that

d∑
j=1

σ2
{j} > (1− ε)σ2.

17.7. For i > 1, let ai = φ2(i) be the van der Corput sequence in base 2. Let xi
be a nested uniform scramble of ai, in base 2. Let yi be a second, independent,
nested uniform scramble of ai, also in base 2.

a) Does (x88, y88) have the uniform distribution in the unit square?

b) Would (x88, y88) be uniformly distributed if digital shifts were used?

17.8. Theory project. Theorem 17.11 requires low discrepancy points. Find
an asymptotic rate for E(|µ̂ − µ|), if instead the points have exactly the same
discrepancy bounds that plain Monte Carlo points have.

17.9. Chapter 6 contains pseudocode for the Brownian bridge construction of
Brownian motion. Compare the Brownian bridge construction to the princi-
pal components construction for the Asian option problem of §17.8. Try both
dimensions d = 16 and d = 250.

17.10. Perhaps the Box-Muller algorithm would be better for the Asian option
problem than the method of inversion used in §17.8.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

Bibliography

Acworth, P., Broadie, M., and Glasserman, P. (1997). A comparison of some
Monte Carlo techniques for option pricing. In Niederreiter, H., Hellekalek, P.,
Larcher, G., and Zinterhof, P., editors, Monte Carlo and quasi-Monte Carlo
methods ’96, pages 1–18. Springer.

Adams, C. R. and Clarkson, J. A. (1934). Properties of functions f(x, y)
of bounded variation. Transactions of the American Mathematical Society,
36(4):711.

Aistleitner, C. and Dick, J. (2015). Functions of bounded variation, signed mea-
sures, and a general Koksma–Hlawka inequality. Acta Arithmetica, 167:143–
171.

Åkesson, F. and Lehoczky, J. P. (2000). Path generation for quasi-Monte Carlo
simulation of mortgage-backed securities. Management Science, 46(9):1171–
1187.

Alexander, J. R., Beck, J., and Chen, W. W. L. (2018). Geometric discrepancy
theory and uniform distribution. In Toth, C. D., O’Rourke, J., and Goodman,
J. E., editors, Handbook of discrete and computational geometry, page 279.
CRC Press, Boca Raton, FL.

Atanassov, E. (2004). On the discrepancy of the Halton sequence. Mathematica
Balkanica, 18:15–32.

Bahadur, R. R. and Savage, L. J. (1956). The nonexistence of certain statis-
tical procedures in nonparametric problems. The Annals of Mathematical
Statistics, 27(4):1115–1122.

Basu, K. and Owen, A. B. (2015). Scrambled geometric net integration over
general product spaces. Foundations of Computational Mathematics, pages
1–30.

139

140 Bibliography

Basu, K. and Owen, A. B. (2018). Quasi-Monte Carlo for an integrand with
a singularity along a diagonal in the square. In Dick, J., Kuo, F. Y., and
Woźniakowski, H., editors, Contemporary Computational Mathematics-A Cel-
ebration of the 80th Birthday of Ian Sloan, pages 119–130. Springer.

Beck, J. and Chen, W. L. (1987). Irregularities of Distribution. Cambridge
University Press, Cambridge.

Binder, C. (1970). Über einen Satz von de Bruijn und Post. Österreichische
Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse.
Sitzungsberichte. Abteilung II, 179:233–251.

Bratley, P. and Fox, B. L. (1988). Algorithm 659: Implementing Sobol’s quasir-
andom sequence generator. ACM Transactions on Mathematical Software,
14(1):88–100.

Breneis, S. and Hinrichs, A. (2019). Fibonacci lattices have minimal dispersion
on the two-dimensional torus. Technical Report arXiv:1905.03856, Johannes
Kepler Universität Linz.

Buslenko, N. P., Golenko, D. I., Schreider, Yu. A., Sobol’, I. M., and Sragovich,
V. G. (1966). The Monte Carlo Method: the Method of Statistical Trials.
Pergamon Press, New York. Translated by G. J. Tee, translation edited by
D. M. Parkyn.

Caflisch, R. E., Morokoff, W., and Owen, A. B. (1997). Valuation of mort-
gage backed securities using Brownian bridges to reduce effective dimension.
Journal of Computational Finance, 1(1):27–46.

Caflisch, R. E. and Moskowitz, B. (1995). Modified Monte Carlo methods using
quasi-random sequences. In Niederreiter, H. and Shiue, P. J.-S., editors,
Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pages
1–16, New York. Springer-Verlag.

Chazelle, B. (2000). The Discrepancy Method: Randomness and Complexity.
Cambridge University Press, Cambridge.

Chen, S. (2011). Consistency and convergence rate of Markov chain quasi Monte
Carlo with examples. PhD thesis, Stanford University.

Chen, S., Dick, J., and Owen, A. B. (2011). Consistency of Markov chain quasi-
Monte Carlo on continuous state spaces. The Annals of Statistics, 39(2):673–
701.

Chen, S., Matsumoto, M., Nishimura, T., and Owen, A. B. (2012). New in-
puts and methods for Markov chain quasi-Monte Carlo. In Plaskota, L.
and Woźniakowski, H., editors, Monte Carlo and quasi-Monte Carlo meth-
ods 2010, pages 313–327. Springer.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

Bibliography 141

Chen, Y., Bornn, L., De Freitas, N., Eskelin, M., Fang, J., and Welling, M.
(2016). Herded Gibbs sampling. The Journal of Machine Learning Research,
17(1):263–291.

Chentsov, N. N. (1967). Pseudorandom numbers for modelling Markov chains.
Computational Mathematics and Mathematical Physics, 7:218–233.

Chi, H., Mascagni, M., and Warnock, T. (2005). On the optimal Halton se-
quence. Mathematics and computers in simulation, 70(1):9–21.

Chung, K.-L. (1949). An estimate concerning the Kolmogoroff limit distribution.
Transactions of the American Mathematical Society, 67(1):36–50.

Clarkson, J. A. and Adams, C. R. (1933). On definitions of bounded variation
for functions of two variables. Transactions of the American Mathematical
Society, 35(4):824–854.

Cools, R., Kuo, F., and Nuyens, D. (2006). Constructing embedded lattice
rules for multivariate integration. SIAM Journal on Scientific Computing,
28(6):2162–2188.

Cranley, R. and Patterson, T. N. L. (1976). Randomization of number theo-
retic methods for multiple integration. SIAM Journal of Numerical Analysis,
13(6):904–914.

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap methods and their appli-
cation. Cambridge University Press, Cambridge.

de Bruijn, N. G. and Post, K. A. (1968). A remark on uniformly distributed
sequences and Riemann integrability. Indagationes Mathematicae, 30:149–
150.

Dick, J. (2008). Walsh spaces containing smooth functions and quasi-Monte
Carlo rules of arbitrarily high order. SIAM Journal of Numerical Analysis,
46(3):1519–1553.

Dick, J. (2009). The decay of the Walsh coefficients of smooth functions. Bulletin
of the Australian Mathematical Society, 80(3):430–453.

Dick, J. (2011). Higher order scrambled digital nets achieve the optimal rate of
the root mean square error for smooth integrands. The Annals of Statistics,
39(3):1372–1398.

Dick, J., Kuo, F. Y., and Sloan, I. H. (2013). High-dimensional integration: the
quasi-Monte Carlo way. Acta Numerica, 22:133–288.

Dick, J., Nuyens, D., and Pillichshammer, F. (2014). Lattice rules for nonperi-
odic smooth integrands. Numerische Mathematik, 126(2):259–291.

Dick, J. and Pillichshammer, F. (2010). Digital sequences, discrepancy and
quasi-Monte Carlo integration. Cambridge University Press, Cambridge.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

142 Bibliography

Doerr, C., Gnewuch, M., and Wahlström, M. (2014). Calculation of discrepancy
measures and applications. In W., C., A., S., and G., T., editors, A Panorama
of Discrepancy Theory, pages 621–678. Springer.

Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans,
volume 38. SIAM, Philadelphia, PA.

Fang, K.-T. and Wang, Y. (1994). Number Theoretic Methods in Statistics.
Chapman & Hall.

Faure, H. (1982). Discrépance de suites associées à un système de numération
(en dimension s). Acta Arithmetica, 41:337–351.

Faure, H. (1992). Good permutations for extreme discrepancy. Journal of
Number Theory, 42(1):47–56.

Faure, H. and Lemieux, C. (2009). Generalized Halton sequences in 2008: A
comparative study. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 19(4):15.

Fox, B. L. (1986). Algorithm 647: implementation and relative efficiency of
quasirandom sequence generators. ACM Transactions on Mathematical Soft-
ware, 12(4):362–376.

Fréchet, M. (1910). Extension au cas des intégrales multiples d’une définition de
l’intégrale due à Stieltjes. Nouvelles Annales de Mathématiques, 10:241–256.

Gerber, M. and Chopin, N. (2015). Sequential quasi-Monte Carlo. Journal of
the Royal Statistical Society, Series B, 77(3):509–579.

Glasserman, P. G. (2004). Monte Carlo methods in financial engineering.
Springer, New York.

Gnewuch, M., Srivastav, A., and Winzen, C. (2009). Finding optimal volume
subintervals with k points and calculating the star discrepancy are NP-hard
problems. Journal of Complexity, 25(2):115–127.

Golubov, B. I. (1984). Multiple Fourier series and integrals. Journal of Soviet
Mathematics, 24(6):639–673.

Grafakos, L. (2004). Classical and Modern Fourier Analysis. Prentice Education
Inc., Upper Saddle River, NJ.

Graham, I. G., Kuo, F. Y., Nichols, J. A., Scheichl, R., Schwab, Ch., and Sloan,
I. H. (2015). Quasi-Monte Carlo finite element methods for elliptic PDEs with
lognormal random coefficients. Numerische Mathematik, 131(2):329–368.

Griebel, M., Kuo, F. Y., and Sloan, I. H. (2010). The smoothing effect of the
ANOVA decomposition. Journal of Complexity, 26(5):523–551.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

Bibliography 143

Griebel, M., Kuo, F. Y., and Sloan, I. H. (2013). The smoothing effect of inte-
gration in Rd and the ANOVA decomposition. Mathematics of Computation,
82(281):383–400.

Hall, P. (1988). Theoretical comparisons of bootstrap confidence intervals. The
Annals of Statistics, 16(3):927–953.

Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals. Numerische Mathematik,
2(1):84–90.

Hammersley, J. M. (1960). Monte Carlo methods for solving multivariable prob-
lems. Annals of the New York Academy of Sciences, 86(3):844–874.

Hartinger, J. and Kainhofer, R. (2006). Non-uniform low-discrepancy sequence
generation and integration of singular integrands. In Niederreiter, H. and
Talay, D., editors, Monte Carlo and Quasi-Monte Carlo Methods 2004, pages
163–179. Springer.

Hartinger, J., Kainhofer, R., and Ziegler, V. (2005). On the corner avoid-
ance properties of various low-discrepancy sequences. INTEGERS: Electronic
Journal of Combinatorial Number Theory, 5(3):A10.

Heinrich, S. (1996). Efficient algorithms for computing the l2-discrepancy. Math-
ematics of Computation of the American Mathematical Society, 65(216):1621–
1633.

Hickernell, F. J. (1996a). The mean square discrepancy of randomized nets.
ACM Transactions on Modeling and Computer Simulation, 6(4):274–296.

Hickernell, F. J. (1996b). Quadrature error bounds with applications to lattice
rules. SIAM Journal on Numerical Analysis, 33(5):1995–2016. Erratum:
1997, v. 34, n. 2, pp 853–866.

Hickernell, F. J. (1998). Goodness-of-fit statistics, discrepancies and robust
designs. Statistics and Probability Letters, 44(1):73–78.

Hickernell, F. J. (2002). Obtaining o(n−2+ε) convergence for lattice quadrature
rules. In Fang, K.-T., Hickernell, F. J., and Niederreiter, N., editors, Monte
Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pages 434–
445, New York. Springer-Verlag.

Hickernell, F. J. and Hong, H. S. (1997). Computing multivariate normal prob-
abilities using rank-1 lattices. In Golub, G. H., Lui, S. H., Luk, F. T., and
Plemmons, R. J., editors, Proceedings of the Workshop on Scientific Comput-
ing, pages 209–215, Singapore. Springer-Verlag.

Hickernell, F. J., Hong, H. S., L’Ecuyer, P., and Lemieux, C. (2000). Exten-
sible lattice sequences for quasi-Monte Carlo quadrature. SIAM Journal on
Scientific Computing, 22(3):1117–1138.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

144 Bibliography

Hickernell, F. J., Lemieux, C., and Owen, A. B. (2005). Control variates for
quasi-Monte Carlo (with discussion). Statistical Science, 20(1):1–31.

Hickernell, F. J. and Niederreiter, H. (2003). The existence of good extensible
rank-1 lattices. Journal of Complexity, 19(3):286–300.

Hlawka, E. (1961). Funktionen von eschränkter variation in der theorie der
gleichverteilung. Annali di Matematica Pura Applicata, 54(1):325–333.

Hlawka, E. (1962). Zur angenäherten Berechnung mehrfacher Integrale. Monat-
shefte fur mathematik, 66(2):140–151.

Hong, H. S. and Hickernell, F. J. (2003). Algorithm 823: Implementing
scrambled digital sequences. AMS Transactions on Mathematical Software,
29(2):95–109.

Hua, L. K. and Wang, Y. (1960). Remarks concerning numerical integration.
Scientific Record (New Series), 4(1):8–11.

Hua, L. K. and Wang, Y. (1981). Applications of Number Theory to Numerical
Analysis. Springer-Verlag, Berlin.

Imai, J. and Tan, K. S. (2006). A general dimension reduction technique for
derivative pricing. Journal of Computational Finance, 10(2):129.

Joe, S. and Disney, S. A. R. (1993). Intermediate rank lattice rules for multidi-
mensional integration. SIAM journal on numerical analysis, 30(2):569–582.

Joe, S. and Kuo, F. Y. (2008). Constructing Sobol’ sequences with better two-
dimensional projections. SIAM Journal on Scientific Computing, 30(5):2635–
2654.

Keller, A. (1997). Instant radiosity. Technical report, Universität Kauser-
slautern.

Kiefer, J. (1961). On large deviations of the empirical d.f. of vector chance
variables and a law of the iterated logarithm. Pacific Journal of Mathematics,
11(2):649–660.

Knuth, D. E. (1998). The Art of Computer Programming, volume 2: Seminu-
merical algorithms. Addison-Wesley, Reading MA, 3rd edition.

Koksma, J. F. (1942/1943). Een algemeene stelling uit de theorie der gelijk-
matige verdeeling modulo 1. Mathematica B (Zutphen), 11:7–11.

Kollig, T. and Keller, A. (2006). Illumination in the presence of weak singulari-
ties. In Niederreiter, H. and Talay, D., editors, Monte Carlo and Quasi-Monte
Carlo Methods 2004, pages 245–257. Springer.

Korobov, N. M. (1959). The approximate computation of multiple integrals
(Russian). Doklady Akademii Nauk SSSR, 124(6):1207–1210.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

Bibliography 145

Kritzer, P. (2006). Improved upper bounds on the star discrepancy of (t,m, s)-
nets and (t, s)-sequences. Journal of Complexity, 22(3):336–347.

Kuipers, L. and Niederreiter, H. (1974). Uniform distribution of sequences.
Wiley, New York.

Kuo, F. Y. (2003). Component-by-component constructions achieve the opti-
mal rate of convergence for multivariate integration in weighted Korobov and
Sobolev spaces. Journal of Complexity, 19(3):301–320.

Kuo, F. Y. and Nuyens, D. (2016). Application of quasi-Monte Carlo methods
to elliptic PDEs with random diffusion coefficients: a survey of analysis and
implementation. Foundations of Computational Mathematics, 16(6):1631–
1696.

Larcher, G. (1987). A best lower bound for good lattice points. Monatshefte für
Mathematik, 104(1):45–51.

Lécot, C. and Ogawa, S. (2002). Quasirandom walk methods. In Fang, K.-T.,
Hickernell, F. J., and Niederreiter, H., editors, Monte Carlo and Quasi-Monte
Carlo Methods 2000. Springer.

L’Ecuyer, P., Lécot, C., and Tuffin, B. (2008). A randomized quasi-Monte Carlo
simulation method for Markov chains. Operations Research, 56(4):958–975.

L’Ecuyer, P. and Lemieux, C. (2000). Variance reduction via lattice rules.
Management Science, 46(9):1214–1235.

L’Ecuyer, P. and Lemieux, C. (2002). A survey of randomized quasi-Monte
Carlo methods. In Dror, M., L’Ecuyer, P., and Szidarovszki, F., editors,
Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and
Applications, pages 419–474. Kluwer Academic Publishers.

L’Ecuyer, P. and Lemieux, C. (2005). Recent advances in randomized quasi-
Monte Carlo methods. In Dror, M., L’Ecuyer, P., and Szidarovszky, F.,
editors, Modeling uncertainty, pages 419–474. Kluwer Academic Publishers,
New York.

L’Ecuyer, P. and Munger, D. (2016). Algorithm 958: Lattice builder: A general
software tool for constructing rank-1 lattice rules. ACM Transactions on
Mathematical Software (TOMS), 42(2):15.

L’Ecuyer, P., Munger, D., Lécot, C., and Tuffin, B. (2018). Sorting methods
and convergence rates for Array-RQMC: some empirical comparisons. Math-
ematics and Computers in Simulation, 143:191–201.

L’Ecuyer, P., Munger, D., and Tuffin, B. (2010). On the distribution of integra-
tion error by randomly-shifted lattice rules. Electronic Journal of Statistics,
4:950–993.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

146 Bibliography

Lemieux, C. (2009). Monte Carlo and quasi-Monte Carlo Sampling. Springer,
New York.

Lemieux, C. and L’Ecuyer, P. (1998). Efficiency improvement by lattice rules
for pricing Asian options. In Proceedings of the 1998 Winter Simulation Con-
ference, pages 579–585.

Loh, W.-L. (2003). On the asymptotic distribution of scrambled net quadrature.
Annals of Statistics, 31(4):1282–1324.

Lyness, J. N. (1989). An introduction to lattice rules and their generator ma-
trices. IMA Journal of Numerical Analysis, 9(3):405–149.

Maize, E. (1981). Contributions to the Theory of Error Reduction in quasi-
Monte Carlo methods. PhD thesis, The Claremont Graduate School.

Matoušek, J. (1998). On the L2–discrepancy for anchored boxes. Journal of
Complexity, 14(4):527–556.

Matoušek, J. (1999). Geometric discrepancy: An illustrated guide, volume 18.
Springer-Verlag, Berlin.

Morokoff, W. J. (1998). Generating quasi-random paths for stochastic processes.
SIAM Review, 40(4):765–788.

Morokoff, W. J. and Caflisch, R. E. (1993). A quasi-Monte Carlo approach
to particle simulation of the heat equation. SIAM Journal on Numerical
Analysis, 30(6):1558–1573.

Morokoff, W. J. and Caflisch, R. E. (1995). Quasi-Monte Carlo integration.
Journal of computational physics, 122(2):218–230.

Moskowitz, B. and Caflisch, R. E. (1996). Smoothness and dimension reduction
in quasi-Monte Carlo methods. Mathematical and Computer Modelling, 23(8-
9):37–54.

Mosteller, F. and Tukey, J. W. (1968). Data analysis, including statistics. Hand-
book of social psychology, 2:80–203.

Niederreiter, H. (1986). Multidimensional numerical integration using pseudo-
random numbers. In Stochastic Programming 84 Part I, volume 27, pages
17–38. Springer, Berlin.

Niederreiter, H. (1987). Point sets and sequences with small discrepancy. Monat-
shefte fur mathematik, 104(4):273–337.

Niederreiter, H. (1992a). Low-discrepancy point sets obtained by digital con-
structions over finite fields. Czechoslovak Mathematical Journal, 42(1):143–
166.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

Bibliography 147

Niederreiter, H. (1992b). Random Number Generation and Quasi-Monte Carlo
Methods. SIAM, Philadelphia, PA.

Niederreiter, H. (1993). Improved error bounds for lattice rules. Journal of
Complexity, 9(1):60–75.

Niederreiter, H. and Xing, C. (1996). Low-discrepancy sequences and global
function fields with many rational places. Finite Fields and their applications,
2(3):241–273.

Nuyens, D. (2013). The construction of good lattice rules and polynomial lattice
rules. Technical Report arXiv:1308.3601, KU Leuven.

Nuyens, D. and Cools, R. (2006). Fast algorithms for component-by-component
construction of rank-1 lattice rules in shift-invariant reproducing kernel hilbert
spaces. Mathematics of Computation, 75(254):903–920.

Ökten, G. (1996). A probabilistic result on the discrepancy of a hybrid-Monte
Carlo sequence and applications. Monte Carlo Methods and Applications,
2(4):255–270.

Ökten, G. and Göncü, A. (2011). Generating low-discrepancy sequences from
the normal distribution: Box–Muller or inverse transform? Mathematical and
Computer Modelling, 53(5-6):1268–1281.

Ökten, G., Shah, M., and Goncharov, Y. (2009). Random and deterministic
digit permutations of the Halton sequence. Technical report, University of
Florida.

Ökten, G., Shah, M., and Goncharov, Y. (2012). Random and deterministic digit
permutations of the Halton sequence. In Plaskota, L. and Woźniakowski, H.,
editors, Monte Carlo and Quasi-Monte Carlo Methods 2010, pages 609–622.
Springer.

Owen, A. B. (1992). Empirical likelihood and small samples. In Computing
Science and Statistics, pages 79–88. Springer.

Owen, A. B. (1994). Lattice sampling revisited: Monte Carlo variance of means
over randomized orthogonal arrays. Annals of Statistics, 22:930–945.

Owen, A. B. (1995). Randomly permuted (t,m, s)-nets and (t, s)-sequences. In
Niederreiter, H. and Shiue, P. J.-S., editors, Monte Carlo and Quasi-Monte
Carlo Methods in Scientific Computing, pages 299–317, New York. Springer-
Verlag.

Owen, A. B. (1997a). Monte Carlo variance of scrambled net quadrature. SIAM
Journal of Numerical Analysis, 34(5):1884–1910.

Owen, A. B. (1997b). Scrambled net variance for integrals of smooth functions.
Annals of Statistics, 25(4):1541–1562.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

148 Bibliography

Owen, A. B. (1998). Latin supercube sampling for very high dimensional simu-
lations. ACM Transactions on Modeling and Computer Simulation, 8(2):71–
102.

Owen, A. B. (2003). Variance with alternative scramblings of digital nets. ACM
Transactions on Modeling and Computer Simulation, 13(4):363–378.

Owen, A. B. (2005). Multidimensional variation for quasi-Monte Carlo. In Fan,
J. and Li, G., editors, International Conference on Statistics in honour of
Professor Kai-Tai Fang’s 65th birthday.

Owen, A. B. (2006a). Halton sequences avoid the origin. SIAM review,
48(3):487–503.

Owen, A. B. (2006b). Randomized QMC and point singularities. In Niederreiter,
H. and Talay, D., editors, Monte Carlo and Quasi-Monte Carlo Methods 2004,
pages 403–418. Springer.

Owen, A. B. (2008). Local antithetic sampling with scrambled nets. Annals of
Statistics, 36(5):2319–2343.

Owen, A. B. and Tribble, S. D. (2005). A quasi-Monte Carlo Metropolis algo-
rithm. Proceedings of the National Academy of Sciences, 102(25):8844–8849.

Papageorgiou, A. (2002). The Brownian bridge does not offer a consistent ad-
vantage in quasi-Monte Carlo integration. Journal of Complexity, 18:171–186.

Paskov, S. and Traub, J. (1995). Faster valuation of financial derivatives. The
Journal of Portfolio Management, 22:113–120.

Pirsic, G. (2002). A software implementation of the Niederreiter-Xing sequences.
In Fang, K.-T., Hickernell, F. J., and Niederreiter, N., editors, Monte Carlo
and Quasi-Monte Carlo Methods in Scientific Computing, pages 434–445, New
York. Springer-Verlag.

Puchhammer, F., Ben Abdellah, A., and L’Ecuyer, P. (2019). Variance reduction
for chemical reaction netowrks with array-RQMC. MCM 2019 slides.

Richtmyer, R. D. (1952). The evaluation of definite integrals, and a quasi-Monte
Carlo method based on the properties of algebraic numbers. Technical Report
LA-1342, University of California.

Roth, K. F. (1954). On irregularities of distribution. Mathematica, 1(2):73–79.

Schlier, Ch. (2004). Error trends in quasi-Monte Carlo integration. Computer
physics communications, 159(2):93–105.

Schmid, W. C. (1999). The exact quality parameter of nets derived from Sobol’
and Niederreiter sequences. In Illiev, O., Kaschiev, M. S., Margenov, S. D.,
Sendov, B. H., and Vassilevski, P. S., editors, Recent advances in numerical
methods and applications, pages 287–295, Singapore. World Scientific.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

Bibliography 149

Schmid, W. C. (2001). Projections of digital nets and sequences. Mathematics
and computers in simulation, 55(1–3):239–247.

Schürer, R. and Schmid, W. C. (2009). MinT–new features and new results. In
L’Ecuyer, P. and Owen, A. B., editors, Monte Carlo and Quasi-Monte Carlo
Methods 2008, pages 501–512, Berlin. Springer-Verlag.

Schwedes, T. and Calderhead, B. (2018). Quasi Markov chain Monte Carlo
methods. Technical Report arXiv:1807.00070, Imperial College, London.

Sidi, A. (1993). A new variable transformation for numerical integration. In
Bräss, H. and Hämmerlin, B., editors, Numerical Integration IV. Birkhäuser
Verlag, Basel.

Sloan, I. H. and Joe, S. (1994). Lattice Methods for Multiple Integration. Oxford
Science Publications, Oxford.

Sloan, I. H. and Reztsov, A. V. (2002). Component-by-component construction
of good lattice rules. Mathematics of Computation, 71(237):263–273.

Sobol’, I. M. (1967). The distribution of points in a cube and the accurate
evaluation of integrals. USSR Computational Mathematics and Mathematical
Physics, 7(4):86–112.

Sobol’, I. M. (1973a). Calculation of improper integrals using uniformly dis-
tributed sequences. Soviet Mathematics Doklady, 14:734–738.

Sobol’, I. M. (1973b). On the use of uniformly distributed sequences for ap-
proximate computations of improper integrals. Theory of cubature formulas
and applications to certain problems in mathematical physics, pages 62–66. In
Russian.

Sobol’, I. M., Asotsky, D., Kreinin, A., and Kucherenko, S. (2011). Construction
and comparison of high-dimensional Sobol’ generators. Wilmott magazine,
2011(56):64–79.

Spanier, J. (1995). Quasi-Monte Carlo Methods for Particle Transport Prob-
lems. In Niederreiter, H. and Shiue, P. J.-S., editors, Monte Carlo and Quasi-
Monte Carlo Methods in Scientific Computing, pages 121–148, New York.
Springer-Verlag.

Surjanovic, S. and Bingham, D. (2013). Virtual library of simulation experi-
ments: test functions and datasets. https://www.sfu.ca/~ssurjano/.

Swayne, D. F., Lang, D. T., Buja, A., and Cook, D. (2003). GGobi: evolving
from XGobi into an extensible framework for interactive data visualization.
Computational Statistics and Data Analysis, 43(4):423–444.

Tezuka, S. (1995). Uniform random numbers: theory and practice. Kluwer
Academic Publishers, Boston.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

150 Bibliography

Tezuka, S. and Faure, H. (2003). I-binomial scrambling of digital nets and
sequences. Journal of Complexity, 19(6):744–757.

Tribble, S. D. (2007). Markov chain Monte Carlo algorithms using completely
uniformly distributed driving sequences. PhD thesis, Stanford University.

Tribble, S. D. and Owen, A. B. (2008). Construction of weakly CUD sequences
for MCMC sampling. Electronic Journal of Statistics, 2:634–660.

Tuffin, B. (1998). Variance reduction order using good lattice points in Monte
Carlo methods. Computing, 61(4):371–378.

Vandewoestyne, B. (2008). Quasi-Monte Carlo techniques for approximation of
high-dimensional integrals. PhD thesis, Katholieke Universiteit, Leuven.

Vandewoestyne, B. and Cools, R. (2006). Good permutations for deterministic
scrambled Halton sequences in terms of L2-discrepancy. Journal of computa-
tional and applied mathematics, 189(1-2):341–361.

Wang, X. and Hickernell, F. J. (2000). Randomized Halton sequences. Mathe-
matical and Computer Modelling, 32(7-8):887–899.

Wang, X. and Sloan, I. H. (2006). Efficient weighted lattice rules with applica-
tions to finance. SIAM Journal on Scientific Computing, 28(2):728–750.

Wang, X. and Sloan, I. H. (2011). Quasi-Monte Carlo methods in financial
engineering: An equivalence principle and dimension reduction. Operations
Research, 59(1):80–95.

Warnock, T. T. (1972). Computational investigations of low discrepancy point
sets. In Zaremba, S. K., editor, Applications of number theory to numerical
analysis, pages 319–343. Academic Press, New York.

Weyl, H. (1914). Über ein problem aus dem gebiete der diophantischen approx-
imationen. Nachrichten der Akademie der Wissenschaften in Göttingen. II.
Mathematisch-Physikalische Klasse, pages 234–244.

Weyl, H. (1916). Über die gleichverteilung von zahlen mod. eins. Mathematische
Annalen, 77:313–352.

Zaremba, S. K. (1968). Mathematical basis of Monte Carlo and quasi-Monte
Carlo methods. SIAM Review, 10(3):303–314.

Zhu, H. and Dick, J. (2014). Discrepancy bounds for deterministic acceptance-
rejection samplers. Electronic Journal of Statistics, 8(1):678–707.

© Art Owen 2019 do not distribute or post electronically without author’s
permission

