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Abstract

We consider probability metrics of the following type: for a class & of functions
and probability measures P, Q we define dg(P, Q):=sup,.|ffdP—[fdQ| A
unified study of such integral probability metrics is given. We characterize the
maximal class of functions that generates such a metric. Further, we show how some
interesting properties of these probability metrics arise directly from conditions on
the generating class of functions. The results are illustrated by several examples,
including the Kolmogorov metric, the Dudley metric and the stop-loss metric.
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1. Introduction

Many models in applied probability are so complex that an explicit calculation of
their characteristics is impossible. Therefore approximations are of practical
importance. But these approximations require some sort of stability of the model.
Very often it is convenient to express stability in terms of probability metrics. Since
most of the characteristics are defined as an integral of some function f with respect
to a probability measure P, probability metrics based on the comparison of integrals
are of special interest.

In recent years there has appeared a vast literature on the theory of probability
metrics. Many results have been summarized in the monograph by Rachev (1991).
Many of the numerous metrics, which have proved to be useful, are based on the
comparison of integrals as follows. For a class ¥ of functions let

d(P, Q):=sup ffdP - jfdQl .
fe&
In Zolotarev (1983) these metrics are called probability metrics with a {-structure.
We will use the more intuitive terminology integral probability metric.
The purpose of this paper is to give a unified study of integral probability metrics.

After providing some preliminary results from functional analysis in Section 2, we
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compare in Section 3 classes of functions generating the same metric. We especially
characterize the maximal generator of an integral probability metric. In Section 4 we
give conditions on the generator which induce interesting properties of the
probability metric. Special emphasis is given to the relationship between conver-
gence in the metric and weak convergence. In Section 5 we apply these results to
several examples, like the Kolmogorov metric, the total variation metric and the
stop-loss metric.

2. Preliminaries

We first make some remarks about our notation. Sets of functions are mostly
denoted by capital frakwur letters such as &, D, R, B, -, whereas we use
calligraphic letters such as o, 8B, & - - - for o-algebras. Sets of (signed) measures are
denoted by open-face letters such as M, P, - - - .

Let (S, &) be a measure space and b:S— [1, ®) a measurable function, called a
weight function. We consider the set B, of measurable functions f:S — R, for which

”f”b:=§lelg%<°°-

For a signed measure u on & we denote the positive and negative variation by u™
resp. . As usual |u|:=pu* +pu” is the total variation. Integrals are sometimes
written in the functional form u(f):=ffdu:= [fdu™ — [ fdp~. Notice that u(f)
exists and is finite if and only if w*(|f]) + = (If]) < .

The set of all signed measures u on & with |u|(b)=pu*(b)+un (b)<® is
denoted by M,,. We write P for the set of all probability measures (p.m.) on &, and
P, := P NM, is the restriction of M, to P. P, is non-void as it contains all the p.m.
with finite support. M} is the set of all signed measures with u(S)=0. Notice that
the difference of two p.m. lies in M} and that every measure in M} is a multiple of
such a difference, i.e. M} is the linear span of P, — P,

For the formulation of our first lemmas we need some notions from functional
analysis, which can be found, for example, in Choquet (1969), §22, or Robertson and
Robertson (1966).

A pair (E, F) of vector spaces is said to be in duality if there is a bilinear mapping
(-,*):E X F - R. The duality is said to be strict if, for each0#x € E, thereisay € F
with (x, y) # 0 and for each 0#y e F there is an x € E with (x, y) #0.

Lemma 2.1. M, and B, are in strict duality under the bilinear mapping
<', .):Mb X %b'_)R
(w, = n(f).

2.1)
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Proof. Evidently 8, and M,, are vector spaces. For f € 8, we have |f|= | fl, - b,
and hence

l(N= R (D +u (D =NFs(e™ )+ 1 ()<

for u € M,. Thus the mapping (-, -) is well defined. It remains to show strictness of
the duality.

(i) B, contains the indicator functions of all sets A € &, as b =1. Therefore
u(f)=0 for all f € B, implies u(A) =0 for all A € ¥, and thus u =0.

(ii)) M, contains all one-point measures §;, s € S. Hence wu(f) =0 for all u € M,
implies 6,(f) =f(s) =0 for all s € S and consequently f = 0.

Remark. In part (i) of the proof we needed the requirement b =1 for the weight
function. Sometimes there is a naturally given weight function b’, which only fulfils
b'=0. We can then use b:=b'+1, leading to M, =M,. and B, =B, i.e. the
measure space remains the same and even more functions can be handled.

Unfortunately the duality (M}, B,) is not strict, as u(f) =0 for all u € M} only
implies that f is constant. But strict duality can be obtained by identifying functions
that differ only by a constant. Formally, we define an equivalence relation f ~ g if
and only if f — g is constant. Denoting the corresponding quotient space by 8B,,_ we
get the following lemma.

Lemma 2.2. M} and 9B, are vector spaces in strict duality under the bilinear
mapping (2.1).

A crucial role in our further investigations is played by the bipolar theorem. The
polar M° of a set M c E (in the duality (E, F)) is defined by

M°:={y e F:|(x, y)|=1 for all x € M}.

The following theorem is known as the bipolar theorem (see e.g. Robertson and
Robertson (1966), p. 35),

Theorem 2.3. (Bipolar theorem). Suppose E and F are in strict duality and X < E.
Then X% is the o(E, F)-closure of the absolutely convex hull of X.

3. Maximal generators

Let (S, &) be an arbitrary measure space and let b:S — R be a weight function. A
mapping d:P, XP,— [0, ] is called a probability metric if it possesses the
following properties.

(i) d(P,, P,)=0 if and only if P, = P,.

(i) d(P, ) =d(P, P).

(i) d(Py, P)=d(P,, P,) +d(P, P3).

If (i) is replaced by the weaker requirement d(P, P)=0 for all P € P,, then we
speak of a probability semimetric.
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In this paper we only consider probability (semi)metrics that are generated by
integrals. For & c B, we define an integral probability (semi)metric dgz on P, by

(3.1) dy(P, Q):=sup f fdP - f FdQ
fed

Remarks. (1) As is common use in the theory of probability metrics, the distance
between two p.m. is allowed to be infinite, see e.g. Rachev (1991), p. 10ff.

(2) In Zolotarev (1983) and Rachev (1991) probability metrics defined as in (3.1)
are called metrics with {-structure.

(3) The metric dg is induced by a seminorm || || on Myp. If we define

(3.2) lellg:=sup (I,
! fed

then dx(P, Q)= |P — Qllg.
(4) The function dg is obviously a probability semimetric. It is a metric if and only
if § separates points in My.

Next we compare different classes of functions that generate the same probability
metric.

Definition 3.1. Let § = B,. The set R of all functions f e B, with the property
(3.3) IP(f) = Q(f)I=dx(P,Q) forall P,QeP,

is called a maximal generator.

Remark. Since My is the linear span of P, — P, f € Ry holds if and only if
k()= lplls for all p e MY

A direct consequence of the definition is the following result.

Lemma 32. Let <D <cB, and P, Q € P,.
(c) If D =Ry, then dg and dy are identical.

The next two results show that Ry is absolutely convex, contains the constant
functions and is closed under linear mixtures.

Theorem 3.3. Let § be an arbitrary generator of dg. Then:

(a) Ry contains the convex hull of F,

(b) f € Ry implies af + B € Ry for all a € [-1, 1] and B € R; and

(c) if the sequence (f,)nen = Ry converges uniformly to f, then f € Rg.

Theorem 3.4. Let (Q, o, p) be a probability space and let f:QXS—R be a
AR F-measurable function that fulfils the following assumptions.
() flw,")eF forall w e Q.
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(ii) There exists a p-integrable function c:Q— Rzq with |f(w, s)| = c(w)b(s) for all
weQ ses.
Then g(+):= [ f(w, -)p(dw) exists and belongs to Rg.

Proof. Since |f(w, x)| = c(w) - b(x) we have for all u € M,:

G4y [ 17w 0 o) 1ni@) = [ c@po) - [ b0 lul (@) <

Specializing u = §;, s € S, we can infer the existence of g(s) = [ f(w, s)p(dw). Now
(3.4) and (ii) imply ||g|ls =S cdp <. Hence g € B, and we can apply Fubini’s
theorem. Thus we have for P, Q € P,

P©) - Q@)1= [ pldw) || P@ (0, 5) - [ Q@) (0, )

= [ pdw)an(P, ) = dx(P, )

This yields g € Rg.

The next theorem is one of the main results of this paper. It gives a characterization
of the maximal generator.

Theorem 3.5. Ry is the o(By, My)-closure of the absolutely convex hull of § and
the constant functions.

Proof. The assertion follows from the bipolar theorem for the duality (M}, B,,-),
if we can show Ry, = (F,~)®. But by the definition of |-||g we have

fe@) ()= Yu e (F/~)

SISl VpeM) with [ulz=1
s lpls YueM
@f € mg/._.

Theorem 3.5 is of rather theoretical nature. As the o(®8,, M,)-topology is hard to
handle, it is not very useful for applications. In our next result, however, we give a
sufficient condition for § = Ry, which is very easy to check.

Corollary 3.6. If § < D <Ry, and D is absolutely convex, contains the constant
functions and is closed with respect to pointwise convergence, then D = Rg.

Proof. Tt is sufficient to show that ® is closed with respect to the topology
o(B,, M,). Since M, includes all one-point measures, the o(*8,, M,)-topology is
finer than the topology of pointwise convergence. Hence each set, which is closed
under pointwise convergence, is also closed with respect to o (*8,, My).
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4. Convergence and uniformity

There is a particular interest in probability metrics that metrize weak conver-
gence. Therefore, we now investigate the relationship between structural properties
of & and weak convergence. From now on we assume that S is a Polish space, i.e.
the topological space (S, J) is metrizable by some metric d such that (S, d) is a
complete separable metric space.

Definition 4.1. Let S be a Polish space and let b:S — [1, ®) be any weight function.
Let dg be some probability metric on P,,. Then dg has:

(a) property (W,), if dg metrizes weak convergence;

(b) property (W), if lim,_.dg(P,, Q,)=dgx(P, Q) for all weak convergent
sequences (P,), (Q,) c Py, with limits P, Q € Py;

(c) property (Ws), if liminf,_.dg(P,, Q,)Zdx(P, Q) for all weak convergent
sequences (P,), (Q,) c P, with limits P, Q € Py,

Remarks: (1) The implications (W;) = (W,) = (W3) are obvious, but in the sequel
we will see that none of them can be reversed.
(2) Property (W,) is equivalent to the following condition:

(W%) if (P,) converges weakly to P, then dg(P,, P)— 0.

If dy has this property, then § is sometimes called a uniform class with respect to
weak convergence, see Rachev (1991), p. 75.

In the following theorem we denote by €, the set of all bounded continuous
functions.

Theorem 4.2. If § = €, then (Ws) holds.

Proof. Let a:=liminf,_.dg(P,, Q,) and £>0. Then there is a subsequence
(k,) =N and a ng € N such that for all n =n, and all f € § we have:

|Pe(f)— Q. (fll=a+e

Hence, if (P,) and (Q,) are weak convergent sequences with limits P, Q and § <G,
then |P(f) — Q(f)|=a + ¢ for all f e §. But this implies

dy(P, Q) =sup |P(f) - Q(f)l=a +e
fes

As € >0 was arbitrary, the assertion follows.

For an arbitrary function f we define the span of f by sp(f):=sup f —inf f. A set
% of functions is said to have uniformly bounded span, if

sup sp () < .
fes¥
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The following theorem can be found in Bhattacharya and Ranga Rao (1976), p.
16.

Theorem 4.3. An integral probability metric dy has property (W) if and only if §
is equicontinuous and has uniformly bounded span.

Corollary 4.4. Property (W») holds if and only if the function d*(x, y) := dx(8,, 6,)
is continuous and bounded.

A necessary and sufficient condition on & for (W,) to hold is, to our knowledge,
unknown. From the preceding theorem it is evident that it is necessary for & to have
uniformly bounded span and to be equicontinuous. Another necessary condition is
the following: the semimetric d* defined in Corollary 4.4 is topologically equivalent
to d.

Example. Let S =R and let
S:={f:R->R:fIL=1L [fl-=1,|f(x) - f(0)| = 1/x], x # O},
where |-|. is the so called Lipschitz-norm defined on an arbitrary metric space
(S, d) as
o Ifx) —f(y)l
If xiggs d(x,y)

Then dy has property (W,), as § is uniformly bounded and equicontinuous. But
(W,) does not hold, since dg(8,, 6o) = 1/n— 0 for n — .

The following sufficient condition for (W) can easily be deduced from Theorem
4.3.2 in Rachev (1991).

Theorem 4.5. If & has uniformly bounded span, is equicontinuous and contains for
every closed set A < S and all n e N the function

§ = fo,a(s) := max {0, 1/n — d(s, A)},
then dg has the property (W;).

A well known example for an integral probability metric that metrizes weak
convergence is the Dudley metric B. It is generated by the set

F:={f:Ifl-=LIfIl.=1}

This metric obviously fulfils the conditions of Theorem 4.5.

There are some more interesting properties of probability metrics. Some of them
are most easily defined in terms of random variables. Therefore we sometimes use
the notation dg(X, Y):= dx(Px, Py).

Definition 4.6. Let (S, d) be a metric vector space, b:S— [1, ®) a weight function
and dg any (semi)metric on Py. Then dg is said to have
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(a) property (R), if dy(8,, 8,) = d(a, b);
(b) property (M), if dg(aX, aY)=adx(X,7Y);
(c) property (C), if dg(Pi* Q, P,* Q) =dy(P,, P,) for all p.m. Q.

Theorem 4.7. Let Ry be the maximal generator of the integral probability metric dg

on Pb'
(a) Property (R) holds if and only if
If &) = f)
up—————=1 forall x,yeS§, x+#y.
feg  dx,y) I Y Y

(b) Property (C) holds if and only if Ry is invariant under translations.

Proof. (a) is trivial.
(b) (i) If Ny is invariant under translations, then f € Ry implies f(- +y) € Ry for
all y e S. Hence

dy(Pi# 0, P Q)= sup |[ QR +)) [ Q@n)PsC +9)

= sup [ O@) da(Py, ) = da(Py, P
=y

Hence (C) holds.
(ii) Now assume that (C) holds. Let f € Rz and P, P, € P,. Define Q:=§,,
y € S. Then we can infer

IP(fC+y)) = P(f( +y)I=1Pi*Q(f) = Po* Q(f)l

=dy(P* Q, P* Q) € dy(P,, Py).

Hence f(- +y) € Ry,

5. Examples

5.1. The Kolmogorov metric. A well known probability metric on S =R is the
Kolmogorov metric p defined by

p(X,Y):= sup [Fx (£) = F(D)].

Since Fx(t) = J 1;«)dPx, the Kolmogorov metric is an integral probability metric
generated by the set &, of all functions 1), t € R. One can use b(s) =1 as weight
function, so that P, consists of all probability measures on R.

The maximal generator of p can be characterized in terms of total variation. We
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denote the set of all functions of bounded variation by BV (R). For a partition
Z =[xo, X1, " * ", X,] of R with xo<x; <:--<x, we define

V(2):= 2 17 = flxi-a)l.
Then the total variation of a function f € BV (R) is defined by
V(f):=sup V(£ Z).

Lemma 5.1. The set §,:={f e BV(R):V(f)=1} is closed with respect to point-
wise convergence.

Proof. Endow BV (R) with the topology of pointwise convergence. Then for a
fixed partition Z the functional f— V(f, Z) is continuous. Hence the functional
f—=V(f)=supz V(f, Z) is lower semicontinuous, as it is a supremum of continuous
functionals. Thus the level set {V(f) =1} is closed.

Theorem 5.2. The maximal generator Ry of the Kolmogorov metric p is the set of
all functions f € BV (R) with total variation V (f) = 1.

Proof. Let &, be the set of all functions f e BV(R) with V(f)=1. Then
obviously %, = §,. The convex hull of ¥, is the set of all increasing step functions
that assume values in [0, 1]. But every increasing function with range in [0, 1] can be
approximated uniformly by such step functions. Thus Theorem 3.3 implies that R
contains all monotone functions f with V(f) = 1. Now the decomposition theorem of
Jordan tells us that every function f with V(f)=1 can be written as a convex
combination of two monotone functions with this property. Hence applying
Theorem 3.3 once more yields §, = Ry. The assertion now follows from Lemma 5.1
and Corollary 3.6.

Remark. Rachev (1991) claims on p.73 that the Kolmogorov metric is generated
by the set of all (Lebesgue) a.e. differentiable functions f with f|f’(x)|dx = 1. This
statement is not true since this set of functions contains all step functions.

Theorem 5.3. The Kolmogorov metric p has the properties (C) and (W,).

Proof. (a) The maximal generator of p obviously is invariant under translations.
Hence Theorem 4.7 implies (C).

(b) By Theorem 4.2, the existence of a generator ® = §, is sufficient for (W3).
Such a generator is given by the set of all functions

0 forx <a,
fis(x)=1(x—-a)/(b—a) fora=x=b,
1 forx > b,

a,belR, a<b.
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5.2. The total variation metric. The set of all signed measures on an arbitrary
measure space (S, ¥) can be endowed with the so-called total variation norm

Il :=1m| (S). The corresponding total variation metric o on the set of all
probability measures is then defined by o(P, Q):=|P — Q| (S), see Zolotarev
(1983).

This is an integral probability metric. Choose b(s)=1 and define %,:=
{2-15:B € ¥}. Then %, is a generator of o, as

il =2 - sup |u(A)|
Aed

for all u € M}. :
The proof of the following theorem is similar to that of Theorem 5.2.

Theorem 5.4. The maximal generator Ry of the total variation metric o is the set of
all measurable functions f:S — R with sp (f) =2.

Theorem 5.5. The total variation metric o has the properties (C) and (W5).

Proof. (a) Property (C) follows immediately from Theorem 4.7.

(b) We claim that ®:=Rg N €, is a generator of o. Property (W3) then follows
from Theorem 4.2. Let f € Ry and P, Q € P,. Define u:=P + Q. It is well known
that the continuous functions are dense in % (u), see e.g. Hewitt and Stromberg
(1965), Theorem 13.21. Thus there is a sequence (¢,) =D with [|f — ¢,/ du— 0.

This yields |P(f)— Q(f) = u(lf — éal) + da(P, Q) > da(P, Q). Hence f e Rsp.
Thus we have D « Ry = Ry and therefore dy = 0.

5.3. The stop—loss metric. Motivated by risk-theoretical considerations, Rachev
and Riischendorf (1990) defined and investigated several so called stop-loss metrics.
The most important one is

dy(X, Y):=sup |[E(X —t)" —E(Y —1)"|,
teR

defined for random variables with finite expectation. This metric was already defined
in Gerber (1981).

If we define on S =R the weight function b(s):=1+|s|, then d;, is an integral
probability metric on P, that is generated by the set Fy of functions s — ¢,(s) =
s-n*teR

Before we can characterize the corresponding maximal generator, we need some
facts pertaining to differences of convex functions. We follow the notation of
Roberts and Varberg (1973). Let I be a closed interval with endpoints a, b. For a

partition Z = {xo, x, - - *, x,} = I with xo<x;<---<x, and a function f:/—R we
define
n—1
Xi) — J\Xi-
Dif:=f(+'_£(——]')' and K(f, Z2):= 2 [Oiif — Oif1-
i i—1 i=1
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Further, K%(f) :=sup K(f, Z), where the supremum is taken over all partitions Z. In
the case I = R we write K(f) for short. It is clear that

(5.1) K(f):= lim Ka(f).

b—o

For the case where [a,b] is a compact interval, a thorough treatment of the
functional KJ can be found in Section 14 of Roberts and Varberg (1973). Using
(5.1), these results can easily be carried over to the case I = R, yielding the following
results.

Lemma 5.6. (a) K(f)<x, if and only if f is the difference of two Lipschitz-
continuous convex functions.

(b) If K(f) < o, then the left and right derivatives D~ f(x) and D *f(x) exist for all
x e Rand K(f)=V(D™f)=V(D*f).

By Lemma 5.6 (b) D*f is of bounded variation if K(f)<. Hence
lim,_, _.. D*f(¢) exists. Thus we can define a functional K* by

K*(f):=K(f) +

lim D*f(t)l.
t—>»—0
This functional can alternatively be defined as follows. For a partition Z define
n-1
K*(f, 2):=I0uf1 + 2 1B f ~ O]

Then K*(f) = supz K*(f, Z).
Using this characterization, the following lemma can be proved similarly to
Lemma 5.1.

Lemma 5.7. The set R, :={f:R— R:K*(f) =1} is closed with respect to pointwise
convergence.

Theorem 5.8. The maximal generator Ry of the stop-loss metric d is the set of all
functions f:R— R with K*(f)=1.

Proof. (a) Let & :={f:R—>R:K*(f)=1}. For ¢,(s):=(s—1)*, t € R, we have
D*¢,=1;), and therefore Lemma 5.6 implies K*(¢,)=K(¢)=V(D"¢,)=1
Hence &, ={¢,:t € R} <= &.

(b) Next we show &; = Ry. From

|[EX —EY|= lim |[E(X —1)* — E(Y = 1)*|=dy(X, Y),
t— —o©

we infer id € Rg. Now fix f € & and define a:=1lim,,_. D*f(x) and B:= K(f).
Then f(x) =: ax + Bfi(x), where f; has the following properties.
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D K(f)=1.

(1) lim,_, - D*fi(x)| = 0.
Hence, if we can show that every function that fulfils (I) and (II) is contained in Ry,
then id € Ry implies §t; = Rg.

Therefore suppose that f fulfils (I) and (II), and let g:=D*f. Since V(g)=
K(f)=1, the function g has the following properties.

T ve=Ll

(Ir') lim,_, . g(x)=0.
From Jordan’s decomposition theorem, we can deduce that there is a y € [0, 1], such
that g can be written as g = yg; — (1 — y)g,, where g, g, are increasing functions
that fulfil (I') and (II') as well. Thus we can assume without loss of generality that g
is increasing. Hence g can be approximated monotonely by increasing step functions

h,,(x) = E a;, I[Bin:m) with Qa;, %0, z Qa;, = 1, B,',, eR.
i=1 i=1
Hence, by Theorem 3.3

(5.2) £.(x):=£(0) + fo " (1) di = Z @, - g, (x) + constant

is contained in Ry, and the monotone convergence theorem implies that (f,)
converges to f, from above on (—,0) and from below on [0, ©). Applying the
monotone convergence theorem once more, we get

jl_fg P(f.) = lg?a (P(fa- 1cw0)) + P(fu- 110)))
=P(f. L-=0) + P(f. Lpo=) = P(f)
for every P e P,. Since f, € Rg, this implies for arbitrary P, Q € P,
IP(f) = QNI = lim |P(f,) — Q(f)| = du(P, Q).

Hence f € Ry and thus we have shown &; c Rs.

(c) By Lemma 5.7, &, is closed with respect to pointwise convergence. It is easy
to see that &, is absolutely convex and contains the constant functions. Thus
Theorem 3.6 implies &, = Ry,

Remark. Rachev and Riischendorf (1990) define a probability metric 6, gener-
ated by

&= {f:lR—» R:f” exists and jlf"(x)l dxél}.
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They show that 0,(X, Y) =dy(X, Y) if EX = EY. But, for EX # EY, 6,(X, Y) is not
finite, as &, contains all functions s — as, @ € R. Thus §, is not a generator of d,.
But if we modify §, to

Fr:= {f: R— R:f" exists and

lim f'(x) +j|f"(x)| dx§l},

we get a generator of dy. To see this you only have to observe that we have
K(f)=[|f"(x)| dx for any twice differentiable function f, cf. Roberts and Varberg
(1973), p. 28, problem D (3).

Theorem 5.9. The probability metric dy has the properties (R) and (C), but none of
the properties (W;)—(W,).

Proof. (a) The properties (R) and (C) follow immediately from Theorem 4.7. For
(C) notice that the functional K* is invariant under translations.
(b) We give the following counterexample for (W,). Let

-1 1
P=l "5, +=8,%8,=:P,
n n

and

“1 1
0,:=1"5,+28,,%8,=: 0.
n n

Then dy(P,, Q,) =3, n e N, but dy(P, Q) = 1. Hence (W,) — (W) cannot hold.

If G is a non-negative unbounded continuous function, then the joint convergence
PP  and deP,,—»JGdP

is called G-weak convergence, see Rachev (1991), Def. 4.2.2. Using this notion, the
following weakening of (Ws) can be proved for d.

Theorem 5.10. Define G(s)=s* and let (P,), (Q,) be G-weak convergent
sequences with limits P and Q. Then

(5.3) ’ liminf dy(P,, 0,)) Z dy(P, Q).

Proof. The functions fi(x):= ¢,(x) - G(x) = (x —1)* —x*, t € R are bounded and
continuous. Therefore G-weak convergence of (P,) to P implies [ ¢, dP,— [ ¢, dP.
Hence (5.3) can be proved similarly to Theorem 4.2.

The following example shows that I is not a uniform class with respect to
G-weak convergence. Let

-1_ .1
6ot =6_,.
n

P, .=

https://doi.org/10.2307/1428011 Published online by Cambridge University Press


https://doi.org/10.2307/1428011

442 ALFRED MULLER

Then the sequence (P,) is G-weak convergent to P := §,, but dy(P,, P)=n. Hence
d does not metrize G-weak convergence.

5.4. Further examples. Another well known integral probability metric is the
Kantorovich metric {,, which is generated by the set £, of Lipschitz functions f with
I fIlL=1, see Zolotarev (1983), p. 284 or Dudley (1989), p. 330. It is well known that
for S=R

4, V) = 6% ¥)i= 150 - R de,

see e.g. Rachev (1991), p.6. It is easy to see that £, is the maximal generator of {;
and that {; has the properties (R), (M), (C) and (W3).

We have already mentioned the Dudley metric as an integral probability metric
that metrizes weak convergence. The most familiar probability metrics with this
property are the Levy metric L and the Prohorov metric m, see Rachev (1991).
These two metrics are not generated by integrals. This follows from the fact that
they both fulfil

5.4 d(8o, (1~ a)8y + a8;) = min {a, 3}

for all a € (0, 1). But this is not possible for an integral probability metric, since for
an arbitrary generator ¥

dg(8o, (1 — a)8p+ ady) = [|@(8o — 8)llg = @ 180 — 8|l

in contradiction to (5.4).
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