Sinkhorn Divergences : Interpolating between Optimal Transport and MMD

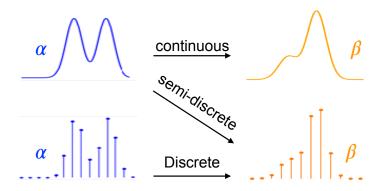
Aude Genevay

DMA - Ecole Normale Supérieure - CEREMADE - Université Paris Dauphine

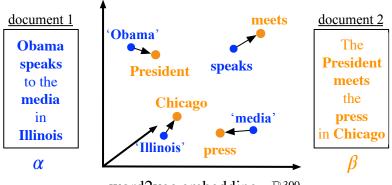
AIP Grenoble - July 2019

Joint work with Gabriel Peyré, Marco Cuturi, Francis Bach, Lénaïc Chizat

Comparing Probability Measures

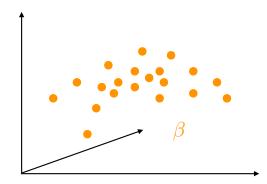


Discrete Setting

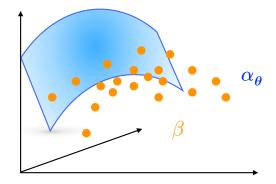


word2vec embedding $\sim \mathbb{R}^{300}$

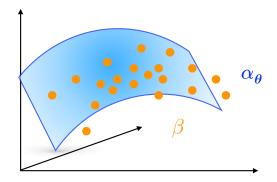
Figure 1 – Exemple of data representation as a point cloud (from Kusner '15)

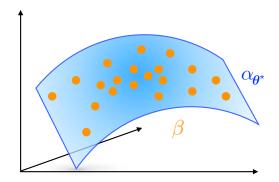


Distances



Distances





1 Notions of Distance between Measures

- 2 Entropic Regularization of Optimal Transport
- 3 Sinkhorn Divergences : Interpolation between OT and MMD
- **4** Unsupervised Learning with Sinkhorn Divergences
- **5** Conclusion

φ -divergences (Czisar '63)

Definition (φ -divergence)

Let φ convex l.s.c. function such that $\varphi(1) = 0$, the φ -divergence D_{φ} between two measures α and β is defined by :

$$\mathcal{D}_{arphi}(lpha|oldsymbol{eta}) \stackrel{ ext{def.}}{=} \int_{\mathcal{X}} arphi \Big(rac{\mathrm{d} lpha(x)}{\mathrm{d} eta(x)} \Big) \mathrm{d} oldsymbol{eta}(x).$$

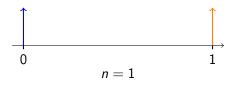
Example (Kullback Leibler Divergence)

$$D_{\mathcal{K}L}(lpha|eta) = \int_{\mathcal{X}} \log\left(rac{\mathrm{d}lpha}{\mathrm{d}eta}(x)
ight) \mathrm{d}lpha(x) \quad \leftrightarrow \quad arphi(x) = x\log(x)$$

Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
The sequence α_n weakly converges to α , i.e.
 $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) d\alpha_n(x) \rightarrow \int f(x) d\alpha(x) \ \forall f \in \mathcal{C}_b(\mathcal{X})$.
Let \mathcal{L} a distance between measures , \mathcal{L} metrises weak
convergence $\mathsf{IFF}\Big(\mathcal{L}(\alpha_n, \alpha) \rightarrow 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha\Big)$.

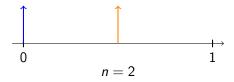
On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.



Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
The sequence α_n weakly converges to α , i.e.
 $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) d\alpha_n(x) \rightarrow \int f(x) d\alpha(x) \,\forall f \in \mathcal{C}_b(\mathcal{X})$.
Let \mathcal{L} a distance between measures, \mathcal{L} metrises weak
convergence $\mathsf{IFF}\Big(\mathcal{L}(\alpha_n, \alpha) \rightarrow 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha\Big)$.

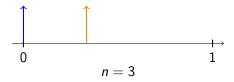
On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.



Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
The sequence α_n weakly converges to α , i.e.
 $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) \mathrm{d}\alpha_n(x) \rightarrow \int f(x) \mathrm{d}\alpha(x) \,\forall f \in \mathcal{C}_b(\mathcal{X})$.
Let \mathcal{L} a distance between measures, \mathcal{L} metrises weak
convergence $\mathsf{IFF}\Big(\mathcal{L}(\alpha_n, \alpha) \rightarrow 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha\Big)$.

On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.



Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
The sequence α_n weakly converges to α , i.e.
 $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) d\alpha_n(x) \rightarrow \int f(x) d\alpha(x) \,\forall f \in \mathcal{C}_b(\mathcal{X})$.
Let \mathcal{L} a distance between measures, \mathcal{L} metrises weak
convergence $\mathsf{IFF}\Big(\mathcal{L}(\alpha_n, \alpha) \rightarrow 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha\Big)$.

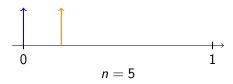
On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{\mathcal{KL}}(\alpha_n | \alpha) = +\infty$.

$$\begin{array}{c}
\uparrow \\
0 \\
n = 4
\end{array}$$

Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
The sequence α_n weakly converges to α , i.e.
 $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) d\alpha_n(x) \rightarrow \int f(x) d\alpha(x) \,\forall f \in \mathcal{C}_b(\mathcal{X})$.
Let \mathcal{L} a distance between measures, \mathcal{L} metrises weak
convergence $\mathsf{IFF}\Big(\mathcal{L}(\alpha_n, \alpha) \rightarrow 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha\Big)$.

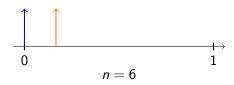
On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{\mathcal{KL}}(\alpha_n | \alpha) = +\infty$.



Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
The sequence α_n weakly converges to α , i.e.
 $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) d\alpha_n(x) \rightarrow \int f(x) d\alpha(x) \ \forall f \in \mathcal{C}_b(\mathcal{X})$.
Let \mathcal{L} a distance between measures , \mathcal{L} metrises weak
convergence $\mathsf{IFF}\Big(\mathcal{L}(\alpha_n, \alpha) \rightarrow 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha\Big)$.

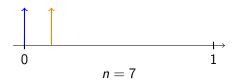
On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.



Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
The sequence α_n weakly converges to α , i.e.
 $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) \mathrm{d}\alpha_n(x) \rightarrow \int f(x) \mathrm{d}\alpha(x) \,\forall f \in \mathcal{C}_b(\mathcal{X})$.
Let \mathcal{L} a distance between measures, \mathcal{L} metrises weak
convergence $\mathsf{IFF}\Big(\mathcal{L}(\alpha_n, \alpha) \rightarrow 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha\Big)$.

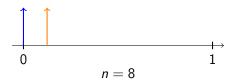
On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.



Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
The sequence α_n weakly converges to α , i.e.
 $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) d\alpha_n(x) \rightarrow \int f(x) d\alpha(x) \,\forall f \in \mathcal{C}_b(\mathcal{X})$.
Let \mathcal{L} a distance between measures, \mathcal{L} metrises weak
convergence $\mathsf{IFF}\Big(\mathcal{L}(\alpha_n, \alpha) \rightarrow 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha\Big)$.

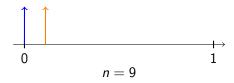
On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.



Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
The sequence α_n weakly converges to α , i.e.
 $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) d\alpha_n(x) \rightarrow \int f(x) d\alpha(x) \,\forall f \in \mathcal{C}_b(\mathcal{X})$.
Let \mathcal{L} a distance between measures, \mathcal{L} metrises weak
convergence $\mathsf{IFF}\Big(\mathcal{L}(\alpha_n, \alpha) \rightarrow 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha\Big)$.

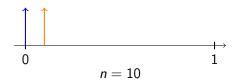
On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{\mathcal{KL}}(\alpha_n | \alpha) = +\infty$.



Definition (Weak Convergence)

Let
$$(\alpha_n)_n \in \mathcal{M}^1_+(\mathcal{X})^{\mathbb{N}}$$
, $\alpha \in \mathcal{M}^1_+(\mathcal{X})$.
The sequence α_n weakly converges to α , i.e.
 $\alpha_n \rightharpoonup \alpha \Leftrightarrow \int f(x) d\alpha_n(x) \rightarrow \int f(x) d\alpha(x) \,\forall f \in \mathcal{C}_b(\mathcal{X})$.
Let \mathcal{L} a distance between measures, \mathcal{L} metrises weak
convergence $\mathsf{IFF}\Big(\mathcal{L}(\alpha_n, \alpha) \rightarrow 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha\Big)$.

On
$$\mathbb{R}$$
, $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.



Maximum Mean Discrepancies (Gretton '06)

Definition (RKHS)

Let \mathcal{H} a Hilbert space with kernel k, then \mathcal{H} is a Reproduicing Kernel Hilbert Space (RKHS) IFF :

1)
$$\forall x \in \mathcal{X}, \quad k(x, \cdot) \in \mathcal{H},$$

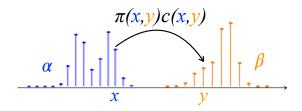
2
$$\forall f \in \mathcal{H}, \quad f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}}.$$

Let \mathcal{H} a RKHS avec kernel k, the distance **MMD** between two probability measures α and β is defined by :

$$MMD_{k}^{2}(\alpha,\beta) \stackrel{\text{def.}}{=} \left(\sup_{\{f \mid \|f\|_{\mathcal{H}} \leq 1\}} |\mathbb{E}_{\alpha}(f(X)) - \mathbb{E}_{\beta}(f(Y))| \right)^{2}$$
$$= \mathbb{E}_{\alpha \otimes \alpha}[k(X,X')] + \mathbb{E}_{\beta \otimes \beta}[k(Y,Y')]$$
$$-2\mathbb{E}_{\alpha \otimes \beta}[k(X,Y)].$$

Optimal Transport (Monge 1781, Kantorovitch '42)

• Cost of moving a unit of mass from x to y : c(x, y)

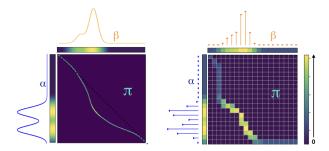


 What is the coupling π that minimized the total cost of moving ALL the mass from α to β?

The Wasserstein Distance

Let
$$\alpha \in \mathcal{M}^{1}_{+}(\mathcal{X})$$
 and $\beta \in \mathcal{M}^{1}_{+}(\mathcal{Y})$,
 $W_{c}(\alpha, \beta) = \min_{\pi \in \Pi(\alpha, \beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y)$ (P)

For $c(x, y) = ||x - y||_2^p$, $W_c(\alpha, \beta)^{1/p}$ is the Wasserstein distance.



Transport Optimal vs. MMD

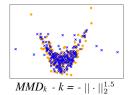
MMD

estimation robust to sampling

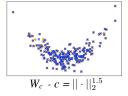
computed in $O(n^2)$

has trouble recovering the support of measures away from dense areas **Optimal Transport**

curse of dimension computed in $O(n^3 \log(n))$ recovers full support of measures



Initial Setting



1 Notions of Distance between Measures

2 Entropic Regularization of Optimal Transport

- Sinkhorn Divergences : Interpolation between OT and MMD
- **4** Unsupervised Learning with Sinkhorn Divergences
- **5** Conclusion

Entropic Regularization (Cuturi '13)

 $\mathsf{Let} lpha \in \mathcal{M}^1_+(\mathcal{X}) ext{ and } eta \in \mathcal{M}^1_+(\mathcal{Y}),$

$$W_{c} (\alpha, \beta) \stackrel{\text{def.}}{=} \min_{\pi \in \Pi(\alpha, \beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y)$$
(\mathcal{P})

Entropic Regularization (Cuturi '13)

 $\mathsf{Let}lpha\in\mathcal{M}^1_+(\mathcal{X}) ext{ and } eta\in\mathcal{M}^1_+(\mathcal{Y}),$

$$W_{c,\varepsilon}(\alpha,\beta) \stackrel{\text{def.}}{=} \min_{\pi \in \Pi(\alpha,\beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) \mathrm{d}\pi(x,y) + \varepsilon D_{\varphi}(\pi | \alpha \otimes \beta) \quad (\mathcal{P}_{\varepsilon})$$

Entropic Regularization (Cuturi '13)

Let
$$lpha\in\mathcal{M}^1_+(\mathcal{X})$$
 and $eta\in\mathcal{M}^1_+(\mathcal{Y})$,

$$W_{c,\varepsilon}(\alpha,\beta) \stackrel{\text{def.}}{=} \min_{\pi \in \Pi(\alpha,\beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) \mathrm{d}\pi(x,y) + \varepsilon H(\pi | \alpha \otimes \beta), \quad (\mathcal{P}_{\varepsilon})$$

where

$$H(\pi | \alpha \otimes \beta) \stackrel{\mathsf{def.}}{=} \int_{\mathcal{X} imes \mathcal{Y}} \log \left(rac{\mathrm{d} \pi(x, y)}{\mathrm{d} lpha(x) \mathrm{d} eta(y)}
ight) \mathrm{d} \pi(x, y).$$

relative entropy of the transport plan π with respect to the product measure $\alpha \otimes \beta$.

Entropic Regularization

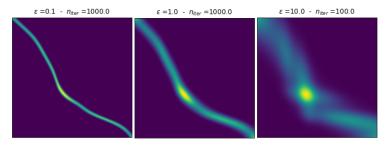


Figure 2 – Influence of the regularization parameter ε on the transport plan $\pi.$

Intuition : the entropic penalty 'smoothes' the problem and avoids over fitting (think of ridge regression for least squares)

Dual Formulation

Contrary to standard OT, no constraint on the dual problem :

$$W_{c} (\alpha, \beta) = \max_{\substack{u \in \mathcal{C}(\mathcal{X}) \\ \mathbf{v} \in \mathcal{C}(\mathcal{Y})}} \int_{\mathcal{X}} u(x) d\alpha(x) + \int_{\mathcal{Y}} \mathbf{v}(y) d\beta(y) \qquad (\mathcal{D})$$

tel que $\{u(x) + \mathbf{v}(y) \leq c(x, y) \forall (x, y) \in \mathcal{X} \times \mathcal{Y}\}$

Dual Formulation

Contrary to standard OT, no constraint on the dual problem :

$$W_{c,\varepsilon}(\alpha,\beta) = \max_{\substack{u \in \mathcal{C}(\mathcal{X}) \\ v \in \mathcal{C}(\mathcal{Y})}} \int_{\mathcal{X}} u(x) d\alpha(x) + \int_{\mathcal{Y}} v(y) d\beta(y) - \varepsilon \int_{\mathcal{X} \times \mathcal{Y}} e^{\frac{u(x) + v(y) - c(x,y)}{\varepsilon}} d\alpha(x) d\beta(y) + \varepsilon. = \max_{\substack{u \in \mathcal{C}(\mathcal{X}) \\ v \in \mathcal{C}(\mathcal{Y})}} \mathbb{E}_{\alpha \otimes \beta} \left[f_{\varepsilon}^{XY}(u,v) \right] + \varepsilon, \qquad (\mathcal{D}_{\varepsilon})$$

with $f_{\varepsilon}^{xy}(u, v) \stackrel{\text{def.}}{=} u(x) + v(y) - \varepsilon e^{\frac{u(x) + v(y) - c(x, y)}{\varepsilon}}$

Sinkhorn's Algorithm

First order conditions for $(\mathcal{D}_{\varepsilon})$, concave in (u, v):

$$e^{u(x)/\varepsilon} = \frac{1}{\int_{\mathcal{Y}} e^{\frac{v(y)-c(x,y)}{\varepsilon}} \mathrm{d}\beta(y)} \quad ; \quad e^{v(y)/\varepsilon} = \frac{1}{\int_{\mathcal{X}} e^{\frac{u(x)-c(x,y)}{\varepsilon}} \mathrm{d}\alpha(x)}$$

 \rightarrow (*u*, *v*) solve a fixed point equation.

Sinkhorn's Algorithm

First order conditions for $(\mathcal{D}_{\varepsilon})$, concave in (u, v) :

$$e^{u_i/\varepsilon} = \frac{1}{\sum_{j=1}^m e^{\frac{v_i-c_{ij}}{\varepsilon}}\beta_j} \quad ; \quad e^{v_j/\varepsilon} = \frac{1}{\sum_{i=1}^n e^{\frac{u_i-c_{ij}}{\varepsilon}}\alpha_i}$$

 $\rightarrow (\textit{u},\textit{v})$ solve a fixed point equation.

Sinkhorn's Algorithm
Let
$$\mathsf{K}_{ij} = e^{-\frac{c(x_i, y_j)}{\varepsilon}}, \mathbf{a} = e^{\frac{\mathbf{u}}{\varepsilon}}, \mathbf{b} = e^{\frac{\mathbf{v}}{\varepsilon}}.$$
$$\mathbf{a}^{(\ell+1)} = \frac{1}{\mathsf{K}(\mathbf{b}^{(\ell)} \odot \beta)} \qquad ; \qquad \mathbf{b}^{(\ell+1)} = \frac{1}{\mathsf{K}^{\mathsf{T}}(\mathbf{a}^{(\ell+1)} \odot \alpha)}$$

Complexity of each iteration : $O(n^2)$, Linear convergence, constant degrades when $\varepsilon \to 0$. 1 Notions of Distance between Measures

- 2 Entropic Regularization of Optimal Transport
- 3 Sinkhorn Divergences : Interpolation between OT and MMD
- **4** Unsupervised Learning with Sinkhorn Divergences
- **5** Conclusion

Sinkhorn Divergences

Issue of entropic transport : $W_{c,\varepsilon}(\alpha, \alpha) \neq 0$

Solution proposée : introduce corrective terms to 'debias' entropic transport

Definition (Sinkhorn Divergences) Let $\alpha \in \mathcal{M}^1_+(\mathcal{X})$ and $\beta \in \mathcal{M}^1_+(\mathcal{Y})$, $SD_{c,\varepsilon}(\alpha,\beta) \stackrel{\text{def.}}{=} W_{c,\varepsilon}(\alpha,\beta) - \frac{1}{2}W_{c,\varepsilon}(\alpha,\alpha) - \frac{1}{2}W_{c,\varepsilon}(\beta,\beta)$,

Interpolation Property

Theorem (G., Peyré, Cuturi '18), (Ramdas and al. '17)

Sinkhorn Divergences have the following asymptotic behavior :

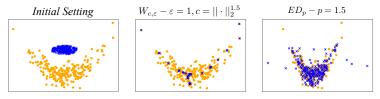
quand
$$\varepsilon \to 0$$
, $SD_{c,\varepsilon}(\alpha, \beta) \to W_c(\alpha, \beta)$, (1)

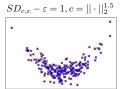
quand
$$\varepsilon \to +\infty$$
, $SD_{c,\varepsilon}(\alpha,\beta) \to \frac{1}{2}MMD^2_{-c}(\alpha,\beta)$. (2)

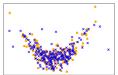
Remark : To get an MMD, -c must be positive definite. For $c = \|\cdot\|_2^p$ with 0 , the MMD is called Energy Distance.

Sinkhorn Divergences

Empirical Illustration







The 'sample complexity'

Informal Definition

Given a distance between measures , its **sample complexity** corresponds to the error made when approximating this distance with samples of the measures.

 \rightarrow Bad sample complexity implies bad generalization (over-fitting).

Known cases :

- OT : $\mathbb{E}|W(\alpha,\beta) W(\hat{\alpha}_n,\hat{\beta}_n)| = O(n^{-1/d})$ \Rightarrow curse of dimension (Dudley '84, Weed and Bach '18)
- MMD : $\mathbb{E}|MMD(\alpha, \beta) MMD(\hat{\alpha}_n, \hat{\beta}_n)| = O(\frac{1}{\sqrt{n}})$ \Rightarrow independent of dimension (Gretton '06)

What about $\mathbb{E}|SD_{\varepsilon}(\alpha,\beta) - SD_{\varepsilon}(\hat{\alpha}_n,\hat{\beta}_n)|$?

Properties of Dual Potentials

Theorem (G., Chizat, Bach, Cuturi, Peyré '19)

Let $\mathcal{X}, \mathcal{Y} \subset \mathbb{R}^d$ bounded , and $c \in \mathcal{C}^\infty$. Then the optimal pairs of dual potentials $(\underline{u}, \underline{v})$ are uniformly bounded in the Sobolev $\mathbf{H}^{\lfloor d/2 \rfloor + 1}(\mathbb{R}^d)$ and their norm verifies :

$$\| \textbf{\textit{u}} \|_{\textbf{H}^{\lfloor d/2 \rfloor + 1}} = O\left(1 + \frac{1}{\varepsilon^{\lfloor d/2 \rfloor}}\right) \text{ et } \| \textbf{\textit{v}} \|_{\textbf{H}^{\lfloor d/2 \rfloor + 1}} = O\left(1 + \frac{1}{\varepsilon^{\lfloor d/2 \rfloor}}\right),$$

with constants depending on $|\mathcal{X}|$ (ou $|\mathcal{Y}|$ pour v), d, and $||c^{(k)}||_{\infty}$ pour $k = 0, \ldots, \lfloor d/2 \rfloor + 1$.

 $\mathsf{H}^{\lfloor d/2 \rfloor+1}(\mathbb{R}^d)$ is a RKHS \rightarrow the dual $(\mathcal{D}_{\varepsilon})$ est the maximization of an expectation in a RKHS ball.

'Sample Complexity' of Sinkhorn Div.

Theorem (Bartlett-Mendelson '02)

Let $\mathbb{P} \in \mathcal{M}^1_+(\mathcal{X})$, ℓ a B-Lipschitz function and \mathcal{H} a RKHS with kernel k bounded on \mathcal{X} by K. Then

$$\mathbb{E}_{\mathbb{P}}\left[\sup_{\{g\mid \|g\|_{\mathcal{H}}\leqslant\lambda\}}\mathbb{E}_{\mathbb{P}}\ell(g,X)-\frac{1}{n}\sum_{i=1}^{n}\ell(g,X_{i})\right]\leqslant 2B\frac{\lambda K}{\sqrt{n}}$$

Theorem (G., Chizat, Bach, Cuturi, Peyré '19)

Let $\mathcal{X},\mathcal{Y}\subset \mathbb{R}^d$ bounded , and $c\in\mathcal{C}^\infty$ *L*-Lipschitz. Then

$$\mathbb{E}|W_{\varepsilon}(\alpha,\beta)-W_{\varepsilon}(\hat{\alpha}_n,\hat{\beta}_n)|=O\left(\frac{e^{\frac{\kappa}{\varepsilon}}}{\sqrt{n}}\left(1+\frac{1}{\varepsilon^{\lfloor d/2\rfloor}}\right)\right),$$

where $\kappa = 2L|\mathcal{X}| + ||c||_{\infty}$ and constants depend on $|\mathcal{X}|$, $|\mathcal{Y}|$, d, and $||c^{(k)}||_{\infty}$ pour $k = 0 \dots \lfloor d/2 \rfloor + 1$.

'Sample Complexity' of Sinkhorn Div.

We get the following asymptotic behavior

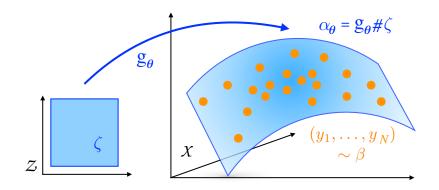
$$\mathbb{E}|W_{\varepsilon}(\alpha,\beta) - W_{\varepsilon}(\hat{\alpha}_{n},\hat{\beta}_{n})| = O\left(\frac{e^{\frac{\kappa}{\varepsilon}}}{\varepsilon^{\lfloor d/2 \rfloor}\sqrt{n}}\right) \qquad \text{quand } \varepsilon \to 0$$
$$\mathbb{E}|W_{\varepsilon}(\alpha,\beta) - W_{\varepsilon}(\hat{\alpha}_{n},\hat{\beta}_{n})| = O\left(\frac{1}{\sqrt{n}}\right) \qquad \text{quand } \varepsilon \to +\infty.$$

- $\rightarrow\,$ We recover the interpolation property,
- $\rightarrow\,$ A large enough regularization breaks the curse of dimension.

1 Notions of Distance between Measures

- 2 Entropic Regularization of Optimal Transport
- Sinkhorn Divergences : Interpolation between OT and MMD
- **4** Unsupervised Learning with Sinkhorn Divergences
- **5** Conclusion

Generative Models



Distances

Problem Formulation

- β the **unknown** measure of the date : finite number of samples $(y_1, \dots, y_N) \sim \beta$
- α_{θ} the parametric model of the form $\alpha_{\theta} \stackrel{\text{def.}}{=} g_{\theta \#} \zeta$: to sample $x \sim \alpha_{\theta}$, draw $z \sim \zeta$ and take $x = g_{\theta}(z)$.

We are looking for the optimal parameter θ^{\ast} defined by

$$heta^* \in \operatorname*{argmin}_{ heta} \mathcal{SD}_{c,arepsilon}(lpha_{m{ heta}},m{eta})$$

NB : α_{θ} and β are only known via their samples.

The Optimization Procedure

We want to solve by gradient descent

 $\min_{\theta} SD_{c,\varepsilon}(\alpha_{\theta},\beta)$

At each descent step k instead of approximating $\nabla_{\theta} SD_{c,\varepsilon}(\alpha_{\theta},\beta)$:

- we approximate $SD_{c,\varepsilon}(\alpha_{\theta^{(k)}},\beta)$ by $SD_{c,\varepsilon}^{(L)}(\hat{\alpha}_{\theta^{(k)}},\hat{\beta})$ via
 - minibatches : draw *n* samples from $\alpha_{\theta^{(k)}}$ and *m* in the dataset (distributed according to β),
 - *L* Sinkhorn iterations : we compute an approximation of the SD bewteen both samples with a fixed number of iterations
- we compute the gradient $\nabla_{\theta} SD_{c,\varepsilon}^{(L)}(\hat{\alpha}_{\theta^{(k)}}, \hat{\beta})$ by backpropagation (with automatic differentiation library)
- we do an update $\theta^{(k+1)} = \theta^{(k)} C_k \nabla_{\theta} SD^{(L)}_{c,\varepsilon}(\hat{\alpha}_{\theta^{(k)}}, \hat{\beta})$

Computing the Gradient in Practice

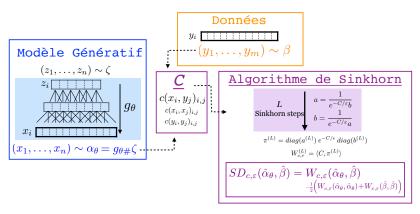


Figure 4 – Scheme of the approximation of the Sinkhorn Divergence from samples (here, $g_{\theta} : z \mapsto x$ is represented as a 2-layer NN).

Empirical Results

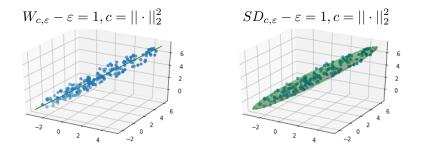


Figure 5 – Influence of the 'debiasing' of the Sinkhorn Divergence (SD_{ε}) compared to regularized OT (W_{ε}) . Data are generated uniformly inside an ellipse, we want to infer the parametersLes données sont générées A, ω (covariance and center).

Learning the cost function

In high dimension (e.g. images), the euclidean distance is not relevant \rightarrow choosing the cost *c* is a complex problem.

Idea : the cost should yield high values for the Sinkhorn Divergence when $\alpha_{\theta} \neq \beta$ to differenciate between synthetic samples (from α_{θ}) and 'real' data (from β). (Li and al '18)

We learn a parametric cost of the form :

$$c_{\varphi}(x,y) \stackrel{ ext{def.}}{=} \|f_{\varphi}(x) - f_{\varphi}(y)\|^{p} \quad ext{where} \quad f_{\varphi}: \mathcal{X} o \mathbb{R}^{d'},$$

The optimization problem becomes a min-max on (θ, φ)

$$\min_{\theta} \max_{\varphi} SD_{c_{\varphi},\varepsilon}(\alpha_{\theta},\beta)$$

 \rightarrow GAN-type problem, cost c acts as a discriminator.

Empirical Results - CIFAR10

(b) $\varepsilon = 100$ (c) $\varepsilon = 1$

Figure 6 – Images generated by α_{θ^*} trained on CIFAR 10

MMD (Gaussian) $\varepsilon = 100$ $\varepsilon = 10$ $\varepsilon = 1$ 4.56 ± 0.07 4.81 ± 0.05 4.79 ± 0.13 4.43 ± 0.07

Table 1 – Inception Scores on CIFAR10 (same setting as MMD-GAN paper (Li et al. '18)).

1 Notions of Distance between Measures

- 2 Entropic Regularization of Optimal Transport
- 3 Sinkhorn Divergences : Interpolation between OT and MMD
- **4** Unsupervised Learning with Sinkhorn Divergences

5 Conclusion

Take Home Message

- Sinkhorn Divergences interpolate between OT (small ε) and MMD (large ε) and get the best of both worlds :
 - inherit geometric properties from OT
 - break curse of dimension for ε large enough
 - fast algorithms for implementation in ML tasks