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Figure 1 — Exemple of data representation as a point cloud (from Kusner

'15)
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¢-divergences (Czisar '63)

Definition (¢-divergence)

Let ¢ convex |.s.c. function such that ¢(1) = 0, the p-divergence
D, between two measures v and 7 is defined by :

Dolal N [ o(F563)a 0

Example (Kullback Leibler Divergence)

Drafal) = [ tog ($00) dab) & (x) = xlog()
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Weak Convergence of measures
Definition (Weak Convergence)

Let (cn)n € ML(X)N, o € ML(X).

The sequence a,, weakly converges to «a, i.e.

an = as [ f(x)dan(x) = [ f(x)da(x) VF € Cp(X).
Let £ a distance between measures , £ metrises weak
convergence IFF<E(oz,,, a) >0 a, — a).

Example

OnR, a = dg and v, = 81/, : Drr(rn]ar) = +oo.
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Maximum Mean Discrepancies (Gretton
06)
Definition (RKHS)
Let H a Hilbert space with kernel k, then H is a Reproduicing
Kernel Hilbert Space (RKHS) IFF :
O VxeX, k(x,)e
®VfeH, f(x ):(f k( N

Let H a RKHS avec kernel k, the distance MMD between two
probability measures v and /3 is defined by :

2
MMD}(a, 7) = ( sup IEa(f(X))—E(f(Y))>

{FllF <1}
= an®o¢[k(X’X/)] +E ® [k(Y7 Y/)]
—2Eaes[k(X, Y)]-
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Optimal Transport (Monge 1781,
Kantorovitch '42)

e Cost of moving a unit of mass from x to y : ¢(x, )

T(x,)e(x,)

T”r/\ R4

X y

C

e What is the coupling 7 that minimized the total cost of
moving ALL the mass from a to 77

Conclusion
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The Wasserstein Distance

Leta € ML (X) and 7 € ML(D),

Weto, )= _min [ cbonnten) ()

For c(x,y) = |x — y|5, Wc(a, 7)Y/P is the Wasserstein distance.
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Transport Optimal vs. MMD

MMD Optimal Transport
estimation robust to sampling curse of
dimension

computed in O(n?)

: 3
has trouble recovering the computed in O(n" log(n))

support of measures away recovers full support of
from dense areas measures
Xg
"y £
L VA m
"i ’g; x W * .
MMDy -k =- || -||1° Initial Setting We -c=||-13°
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@ Entropic Regularization of Optimal Transport
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Entropic Regularization (Cuturi '13)

Leta € ML (X) and 7 € ML(D),

We («, ) def. ew(in ’3)/2( yc(x,y)dw(x,y) (P)
meM(a, x
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Entropic Regularization (Cuturi '13)

Leta € ML (X) and 7 € ML(D),

We e(a, ) def. Er|1|1(in B /X yc(x,y)dﬂ(x,y) +eDy(mla® ) (Pe)
T a,/ %
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Entropic Regularization (Cuturi '13)

Leta € ML (X) and 7 € ML(D),

We (o, 1) = min /X c(x,y)dn(x,y) +eH(mla® 7)), (Pe)

H(rla ® 7)< /XW log (M) dr(x,y).

relative entropy of the transport plan 7 with respect to the product
measure a ® (7.
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Entropic Regularization

£=0.1 - Nger =1000.0 £=10 - Ny =1000.0 £=100 - N, =100.0

Figure 2 — Influence of the regularization parameter ¢ on the transport
plan 7.

Intuition : the entropic penalty ‘smoothes’ the problem and avoids
over fitting (think of ridge regression for least squares)
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Dual Formulation

Contrary to standard OT, no constraint on the dual problem :

We (. f)—u%?g | wgaao + /y Ay (D)
veC(y

tel que {u(x)+ v(y) < c(x,y)V(x,y) € X x V}
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Dual Formulation

Contrary to standard OT, no constraint on the dual problem :

Weeo, ) = max [ uGda()+ [ v)ai)

’ uEC(X) .
€C(Y)
— 5/ o ele) da(x)d(y) + €
XxY
— X
= max Euo | (,1)] 4 D.)
€C(Y)
Wit (u, v) & u(x) + o(y) — ee 2

Conclusion

15/34
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Sinkhorn’s Algorithm

First order conditions for (D;), concave in (u, v) :

eu(x)/s _ 1

()%) W= () —ct)
v(y)—c(x,y u(x)—c(x,y
Jye = dily) Jve = da(x)

— (u, v) solve a fixed point equation.
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Sinkhorn’s Algorithm

First order conditions for (D.), concave in (u, v) :
1 1
m i —Cij ! n uj—cjj
> i1 = U doim1€ F

— (u, v) solve a fixed point equation.

eui/sz el/ez

Sinkhorn's Algorithm

_clxiyj) o
LetK,‘jze e ,a=¢€¢,b=ec.

0+1) 1 : _ 1

( _
@ KbO o) KT (a1 o )

Complexity of each iteration : O(n?),
Linear convergence, constant degrades when ¢ — 0.

16/34



Distances Entropic Regularization Sinkhorn Divergences Apprentissage Conclusion

© Sinkhorn Divergences : Interpolation between OT and MMD
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Sinkhorn Divergences

Issue of entropic transport : W, .(a, ) # 0
Solution proposée : introduce corrective terms to ‘debias’ entropic
transport

Definition (Sinkhorn Divergences)

Leta € ML (X) and 7 € ML(D),

def. 1

] 1
SDc,a(ay ) = Wc,e(a, )_ EWc,a(aaa) - EWc,a( s ))
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Interpolation Property

Theorem (G., Peyré, Cuturi '18), (Ramdas and al. '17)

Sinkhorn Divergences have the following asymptotic behavior :
quand ¢ = 0, SD..(a, 7) = Wc(a, 7), (1)

1
quand € — 400, SD..(c, 7)) — EMI\/IDEC(a, )- (2)

Remark : To get an MMD, —c must be positive definite. For
c=1|-]5 with0 < p < 2, the MMD is called Energy Distance.
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Empirical lllustration
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Sl el
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Sinkhorn Divergences

The ‘'sample complexity’

Informal Definition

Given a distance between measures , its sample complexity
corresponds to the error made when approximating this distance
with samples of the measures.

— Bad sample complexity implies bad generalization (over-fitting).

Known cases :
o OT : E|\W(a, ) — W(én, 7,)| = O(n=Y/9)
= curse of dimension (Dudley '84, Weed and Bach '18)
e MMD : E|[MMD(«, ) — MMD(ép, ,)| = O(ﬁ)
= independent of dimension (Gretton '06)

What about E|SD.(c, 7) — SD-(én, 91)] 7
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Sinkhorn Divergences

Properties of Dual Potentials

Theorem (G., Chizat, Bach, Cuturi, Peyré '19)

LetX,) C RY bounded , and ¢ € C*. Then the optimal pairs of
dual potentials (u, ) are uniformly bounded in the Sobolev
HL9/2]¥1(R9) and their norm verifies :

1
lulyra2i41 = O (1 + Ldm) et |v|nies2e1 = O <1 + Ld/2j>

with constants depending on |X| (ou || pour v), d, and Hc(k)”OO
pour k =0,...,[d/2] + 1.

HL9/2/+1(R9) is a RKHS — the dual (D.) est the maximization of
an expectation in a RKHS ball.
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Sinkhorn Divergences

‘Sample Complexity’ of Sinkhorn Div.
Theorem (Bartlett-Mendelson '02)
Let P € MY (X), ¢ a B-Lipschitz function and # a RKHS with
kernel k bounded on X by K. Then

Ep sup  Epl(g,X)— =) (g, X
{ellgln<A} Z

AK
<2B—.

\/75

Theorem (G., Chizat, Bach, Cuturi, Peyré '19)
Let X, Y C RY bounded , and ¢ € C*® L-Lipschitz. Then

E|W.(a, 5) — We(@n, 00)| = O (\e/ﬁ (1 o gtdl/2J>) ’

where k = 2L|X| + ||c||, and constants depend on |X|, V|, d,
and Hc(k)HC>o pour k =0...[d/2] + 1.
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‘Sample Complexity’ of Sinkhorn Div.

We get the following asymptotic behavior

. et
E|Wg(0&, ) - WE(an7 )| = O <M> quand e—=0
E[W. (@, 7) — W(dn, 1,)| = O (%) quand £ — +5x.

— We recover the interpolation property,

— A large enough regularization breaks the curse of dimension.
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O Unsupervised Learning with Sinkhorn Divergences
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Problem Formulation

e 4 the unknown measure of the date :
finite number of samples ~

e« the parametric model of the form ay &t go4C :
to sample x ~ ay, draw z ~ ¢ and take x = gy(z).

We are looking for the optimal parameterf* defined by

0* € argmin SD. (v, )
0

NB : ay and 3 are only known via their samples.

Conclusion
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The Optimization Procedure

We want to solve by gradient descent

mgin SD. (g, 17)

At each descent step k instead of approximating VSD. -(cv, ) :

e we approximate SDc (v, 7) by SD&LE)(&Q(M, ) via
e minibatches : draw n samples from oy and m in the dataset
(distributed according to /7),
e [ Sinkhorn iterations : we compute an approximation of the
SD bewteen both samples with a fixed number of iterations
e we compute the gradient V@SDEQ(&B(@, ) by
backpropagation (with automatic differentiation library)

e we do an update 9(kt1) = g(k) _ CkVQSDg,LE)(dQ(k)’ )
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Computing the Gradient in Practice

Données
Yi
Modéle Génératif| ;iU .. Ym) ~ B
(Zh-'-yzn)NC M B N
Z[TTT7 1] g Algorithme de Sinkhorn
ABOOOA N et
[T i1 i1 71] kY
W}}WNWNW g6 N S Sinkhorn steps b 1
A c(Yiryj)ij v " e Cleq
T
f o) = dz‘ag(a(L)) e C/e diag(b(L)]
(Ilw'wl.n) ~ g = g@#C“ """" * Wb = (c, 7))
SDcts(dF)a ﬁ) = Wc,s(dﬁs 6)
,g(w;.,,g(ao. )+ W (. 1%))

Figure 4 — Scheme of the approximation of the Sinkhorn Divergence from
samples (here, gy : z — x is represented as a 2-layer NN).
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Empirical Results

e N s oo

Figure 5 — Influence of the ‘'debiasing’ of the Sinkhorn Divergence (SD.)
compared to regularized OT (W;). Data are generated uniformly inside
an ellipse, we want to infer the parametersLes données sont générées A, w
(covariance and center).
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Apprentissage

Learning the cost function

In high dimension (e.g. images), the euclidean distance is not
relevant — choosing the cost ¢ is a complex problem.

Idea : the cost should yield high values for the Sinkhorn Divergence
when ay # [ to differenciate between synthetic samples (from ay)
and ‘real’ data (from /7). (Li and al '18)

We learn a parametric cost of the form :
def. !
co(x,y) = [fo(x) = fo(y)|P where f,: X —RY,
The optimization problem becomes a min-max on (¢, ¢)

mein max SDe, (g, )

— GAN-type problem, cost ¢ acts as a discriminator.
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Empirical Results - CIFAR10
NEEEEEE [

(b) e = 100 (c)e=1
Figure 6 — Images generated by ap- trained on CIFAR 10

MMD (Gaussian) ¢ = 100 e=10 e=1

4.56 £ 0.07 481+0.05 4.79+£0.13 4.43+0.07

Table 1 — Inception Scores on CIFAR10 (same setting as MMD-GAN
paper (Li et al. '18)).
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@ Conclusion
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Take Home Message

e Sinkhorn Divergences interpolate between OT (small €) and
MMD (large €) and get the best of both worlds :
e inherit geometric properties from OT
e break curse of dimension for ¢ large enough
e fast algorithms for implementation in ML tasks
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