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Abstract

We present the Word Mover’s Distance (WMD),
a novel distance function between text docu-
ments. Our work is based on recent results in
word embeddings that learn semantically mean-
ingful representations for words from local co-
occurrences in sentences. The WMD distance
measures the dissimilarity between two text doc-
uments as the minimum amount of distance that
the embedded words of one document need to
“travel” to reach the embedded words of another
document. We show that this distance metric can
be cast as an instance of the Earth Mover’s Dis-
tance, a well studied transportation problem for
which several highly efficient solvers have been
developed. Our metric has no hyperparameters
and is straight-forward to implement. Further, we
demonstrate on eight real world document classi-
fication data sets, in comparison with seven state-
of-the-art baselines, that the WMD metric leads
to unprecedented low k-nearest neighbor docu-
ment classification error rates.

1. Introduction
Accurately representing the distance between two docu-
ments has far-reaching applications in document retrieval
(Salton & Buckley, 1988), news categorization and cluster-
ing (Ontrup & Ritter, 2001; Greene & Cunningham, 2006),
song identification (Brochu & Freitas, 2002), and multi-
lingual document matching (Quadrianto et al., 2009).

The two most common ways documents are represented
is via a bag of words (BOW) or by their term frequency-
inverse document frequency (TF-IDF). However, these fea-
tures are often not suitable for document distances due to

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
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Figure 1. An illustration of the word mover’s distance. All
non-stop words (bold) of both documents are embedded into a
word2vec space. The distance between the two documents is the
minimum cumulative distance that all words in document 1 need
to travel to exactly match document 2. (Best viewed in color.)

their frequent near-orthogonality (Schölkopf et al., 2002;
Greene & Cunningham, 2006). Another significant draw-
back of these representations are that they do not capture
the distance between individual words. Take for example
the two sentences in different documents: Obama speaks
to the media in Illinois and: The President greets the press
in Chicago. While these sentences have no words in com-
mon, they convey nearly the same information, a fact that
cannot be represented by the BOW model. In this case, the
closeness of the word pairs: (Obama, President); (speaks,
greets); (media, press); and (Illinois, Chicago) is not fac-
tored into the BOW-based distance.

There have been numerous methods that attempt to circum-
vent this problem by learning a latent low-dimensional rep-
resentation of documents. Latent Semantic Indexing (LSI)
(Deerwester et al., 1990) eigendecomposes the BOW fea-
ture space, and Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) probabilistically groups similar words into top-
ics and represents documents as distribution over these top-
ics. At the same time, there are many competing vari-
ants of BOW/TF-IDF (Salton & Buckley, 1988; Robert-
son & Walker, 1994). While these approaches produce a
more coherent document representation than BOW, they
often do not improve the empirical performance of BOW
on distance-based tasks (e.g., nearest-neighbor classifiers)
(Petterson et al., 2010; Mikolov et al., 2013c).

word2vec embedding ~ℝ300
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Figure 1 – Exemple of data representation as a point cloud (from Kusner
’15)
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ϕ-divergences (Czisar ’63)

Definition (ϕ-divergence)

Let ϕ convex l.s.c. function such that ϕ(1) = 0, the ϕ-divergence
Dϕ between two measures α and β is defined by :

Dϕ(α|β) def.
=

∫

X
ϕ
(dα(x)

dβ(x)

)
dβ(x).

Example (Kullback Leibler Divergence)

DKL(α|β) =
∫

X
log

(
dα
dβ

(x)

)
dα(x) ↔ ϕ(x) = x log(x)
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Weak Convergence of measures
Definition (Weak Convergence)

Let (αn)n ∈M1
+(X )N, α ∈M1

+(X ).
The sequence αn weakly converges to α, i.e.
αn ⇀ α⇔

∫
f (x)dαn(x)→

∫
f (x)dα(x) ∀f ∈ Cb(X ).

Let L a distance between measures , L metrises weak
convergence IFF

(
L(αn, α)→ 0⇔ αn ⇀ α

)
.

Example

OnR, α = δ0 and αn = δ1/n : DKL(αn|α) = +∞.

0 1
n = 1
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Weak Convergence of measures
Definition (Weak Convergence)

Let (αn)n ∈M1
+(X )N, α ∈M1

+(X ).
The sequence αn weakly converges to α, i.e.
αn ⇀ α⇔

∫
f (x)dαn(x)→

∫
f (x)dα(x) ∀f ∈ Cb(X ).

Let L a distance between measures , L metrises weak
convergence IFF

(
L(αn, α)→ 0⇔ αn ⇀ α

)
.

Example

OnR, α = δ0 and αn = δ1/n : DKL(αn|α) = +∞.

0 1
n = 2
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Weak Convergence of measures
Definition (Weak Convergence)

Let (αn)n ∈M1
+(X )N, α ∈M1

+(X ).
The sequence αn weakly converges to α, i.e.
αn ⇀ α⇔

∫
f (x)dαn(x)→

∫
f (x)dα(x) ∀f ∈ Cb(X ).

Let L a distance between measures , L metrises weak
convergence IFF

(
L(αn, α)→ 0⇔ αn ⇀ α

)
.

Example

OnR, α = δ0 and αn = δ1/n : DKL(αn|α) = +∞.

0 1
n = 3
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Weak Convergence of measures
Definition (Weak Convergence)

Let (αn)n ∈M1
+(X )N, α ∈M1

+(X ).
The sequence αn weakly converges to α, i.e.
αn ⇀ α⇔

∫
f (x)dαn(x)→

∫
f (x)dα(x) ∀f ∈ Cb(X ).

Let L a distance between measures , L metrises weak
convergence IFF

(
L(αn, α)→ 0⇔ αn ⇀ α

)
.

Example

OnR, α = δ0 and αn = δ1/n : DKL(αn|α) = +∞.

0 1
n = 4
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Weak Convergence of measures
Definition (Weak Convergence)

Let (αn)n ∈M1
+(X )N, α ∈M1

+(X ).
The sequence αn weakly converges to α, i.e.
αn ⇀ α⇔

∫
f (x)dαn(x)→

∫
f (x)dα(x) ∀f ∈ Cb(X ).

Let L a distance between measures , L metrises weak
convergence IFF

(
L(αn, α)→ 0⇔ αn ⇀ α

)
.

Example

OnR, α = δ0 and αn = δ1/n : DKL(αn|α) = +∞.

0 1
n = 5
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Weak Convergence of measures
Definition (Weak Convergence)

Let (αn)n ∈M1
+(X )N, α ∈M1

+(X ).
The sequence αn weakly converges to α, i.e.
αn ⇀ α⇔

∫
f (x)dαn(x)→

∫
f (x)dα(x) ∀f ∈ Cb(X ).

Let L a distance between measures , L metrises weak
convergence IFF

(
L(αn, α)→ 0⇔ αn ⇀ α

)
.

Example

OnR, α = δ0 and αn = δ1/n : DKL(αn|α) = +∞.

0 1
n = 6
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Weak Convergence of measures
Definition (Weak Convergence)

Let (αn)n ∈M1
+(X )N, α ∈M1

+(X ).
The sequence αn weakly converges to α, i.e.
αn ⇀ α⇔

∫
f (x)dαn(x)→

∫
f (x)dα(x) ∀f ∈ Cb(X ).

Let L a distance between measures , L metrises weak
convergence IFF

(
L(αn, α)→ 0⇔ αn ⇀ α

)
.

Example

OnR, α = δ0 and αn = δ1/n : DKL(αn|α) = +∞.

0 1
n = 7
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Weak Convergence of measures
Definition (Weak Convergence)

Let (αn)n ∈M1
+(X )N, α ∈M1

+(X ).
The sequence αn weakly converges to α, i.e.
αn ⇀ α⇔

∫
f (x)dαn(x)→

∫
f (x)dα(x) ∀f ∈ Cb(X ).

Let L a distance between measures , L metrises weak
convergence IFF

(
L(αn, α)→ 0⇔ αn ⇀ α

)
.

Example

OnR, α = δ0 and αn = δ1/n : DKL(αn|α) = +∞.

0 1
n = 8
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Weak Convergence of measures
Definition (Weak Convergence)

Let (αn)n ∈M1
+(X )N, α ∈M1

+(X ).
The sequence αn weakly converges to α, i.e.
αn ⇀ α⇔

∫
f (x)dαn(x)→

∫
f (x)dα(x) ∀f ∈ Cb(X ).

Let L a distance between measures , L metrises weak
convergence IFF

(
L(αn, α)→ 0⇔ αn ⇀ α

)
.

Example

OnR, α = δ0 and αn = δ1/n : DKL(αn|α) = +∞.

0 1
n = 9
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Weak Convergence of measures
Definition (Weak Convergence)

Let (αn)n ∈M1
+(X )N, α ∈M1

+(X ).
The sequence αn weakly converges to α, i.e.
αn ⇀ α⇔

∫
f (x)dαn(x)→

∫
f (x)dα(x) ∀f ∈ Cb(X ).

Let L a distance between measures , L metrises weak
convergence IFF

(
L(αn, α)→ 0⇔ αn ⇀ α

)
.

Example

OnR, α = δ0 and αn = δ1/n : DKL(αn|α) = +∞.

0 1
n = 10
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Maximum Mean Discrepancies (Gretton
’06)

Definition (RKHS)

Let H a Hilbert space with kernel k , then H is a Reproduicing
Kernel Hilbert Space (RKHS) IFF :

1 ∀x ∈ X , k(x , ·) ∈ H,
2 ∀f ∈ H, f (x) = 〈f , k(x , ·)〉H.

Let H a RKHS avec kernel k , the distance MMD between two
probability measures α and β is defined by :

MMD2
k (α, β)

def.
=

(
sup

{f |||f ||H61}
|Eα(f (X ))− Eβ(f (Y ))|

)2

= Eα⊗α[k(X ,X
′)] + Eβ⊗β[k(Y ,Y

′)]

−2Eα⊗β[k(X ,Y )].
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Optimal Transport (Monge 1781,
Kantorovitch ’42)

• Cost of moving a unit of mass from x to y : c(x , y)

! "
x y

π(x,y)c(x,y)

• What is the coupling π that minimized the total cost of
moving ALL the mass from α to β ?
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The Wasserstein Distance

Letα ∈M1
+(X ) and β ∈M1

+(Y),

Wc(α, β) = min
π∈Π(α,β)

∫

X×Y
c(x , y)dπ(x , y) (P)

For c(x , y) = ||x − y ||p2 , Wc(α, β)
1/p is the Wasserstein distance.
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Transport Optimal vs. MMD

MMD

estimation robust to sampling

computed in O(n2)

has trouble recovering the
support of measures away

from dense areas

Optimal Transport

curse of
dimension

computed in O(n3 log(n))

recovers full support of
measures

Wc," � " = 1, c = || · ||1.5
2MMDk  - k = - Initial Setting Wc," � " = 1, c = || · ||1.5

2Wc  - c = 

!"

#
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Entropic Regularization (Cuturi ’13)

Letα ∈M1
+(X ) and β ∈M1

+(Y),

Wc (α, β)
def.
= min
π∈Π(α,β)

∫

X×Y
c(x , y)dπ(x , y) (P)

where

H(π|α⊗ β) def.
=

∫

X×Y
log

(
dπ(x , y)

dα(x)dβ(y)

)
dπ(x , y).

relative entropy of the transport plan π with respect to the product
measure α⊗ β.
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Entropic Regularization (Cuturi ’13)

Letα ∈M1
+(X ) and β ∈M1

+(Y),

Wc,ε(α, β)
def.
= min
π∈Π(α,β)

∫

X×Y
c(x , y)dπ(x , y) + εDϕ(π|α⊗ β) (Pε)

where

H(π|α⊗ β) def.
=

∫

X×Y
log

(
dπ(x , y)

dα(x)dβ(y)

)
dπ(x , y).

relative entropy of the transport plan π with respect to the product
measure α⊗ β.
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Entropic Regularization (Cuturi ’13)

Letα ∈M1
+(X ) and β ∈M1

+(Y),

Wc,ε(α, β)
def.
= min
π∈Π(α,β)

∫

X×Y
c(x , y)dπ(x , y) + εH(π|α⊗ β), (Pε)

where

H(π|α⊗ β) def.
=

∫

X×Y
log

(
dπ(x , y)

dα(x)dβ(y)

)
dπ(x , y).

relative entropy of the transport plan π with respect to the product
measure α⊗ β.
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Entropic Regularization

Figure 2 – Influence of the regularization parameter ε on the transport
plan π.

Intuition : the entropic penalty ‘smoothes’ the problem and avoids
over fitting (think of ridge regression for least squares)
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Dual Formulation

Contrary to standard OT, no constraint on the dual problem :

Wc (α, β) = max
u∈C(X )
v∈C(Y)

∫

X
u(x)dα(x) +

∫

Y
v(y)dβ(y) (D)

tel que {u(x) + v(y) 6 c(x , y) ∀ (x , y) ∈ X × Y}

withf xyε (u, v)
def.
= u(x) + v(y)− εe u(x)+v(y)−c(x,y)

ε
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Dual Formulation

Contrary to standard OT, no constraint on the dual problem :

Wc,ε(α, β) = max
u∈C(X )
v∈C(Y)

∫

X
u(x)dα(x) +

∫

Y
v(y)dβ(y)

− ε
∫

X×Y
e

u(x)+v(y)−c(x,y)
ε dα(x)dβ(y) + ε.

= max
u∈C(X )
v∈C(Y)

Eα⊗β
[
f XY
ε (u, v)

]
+ ε, (Dε)

withf xyε (u, v)
def.
= u(x) + v(y)− εe u(x)+v(y)−c(x,y)

ε
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Sinkhorn’s Algorithm
First order conditions for (Dε), concave in (u, v) :

eu(x)/ε =
1

∫
Y e

v(y)−c(x,y)
ε dβ(y)

; ev(y)/ε =
1

∫
X e

u(x)−c(x,y)
ε dα(x)

→ (u, v) solve a fixed point equation.

Sinkhorn’s Algorithm

Let Kij = e−
c(xi ,yj )

ε , a = e
u
ε ,b = e

v
ε .

a(`+1) =
1

K(b(`) � β)
; b(`+1) =

1
KT (a(`+1) �α)

Complexity of each iteration : O(n2),
Linear convergence, constant degrades when ε→ 0.
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Sinkhorn Divergences

Issue of entropic transport : Wc,ε(α, α) 6= 0
Solution proposée : introduce corrective terms to ‘debias’ entropic
transport

Definition (Sinkhorn Divergences)

Letα ∈M1
+(X ) and β ∈M1

+(Y),

SDc,ε(α, β)
def.
= Wc,ε(α, β)−

1
2
Wc,ε(α, α)−

1
2
Wc,ε(β, β),

18/34
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Interpolation Property

Theorem (G., Peyré, Cuturi ’18), (Ramdas and al. ’17)

Sinkhorn Divergences have the following asymptotic behavior :

quand ε→ 0, SDc,ε(α, β)→Wc(α, β), (1)

quand ε→ +∞, SDc,ε(α, β)→
1
2
MMD2

−c(α, β). (2)

Remark : To get an MMD, −c must be positive definite. For
c = || · ||p2 with 0 < p < 2, the MMD is called Energy Distance.
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Empirical Illustration

SDc," � " = 102, c = || · ||1.5
2SDc," � " = 1, c = || · ||1.5

2

Wc," � " = 1, c = || · ||1.5
2

EDp � p = 1.5Initial Setting

Figure 3 – Goal : Recover the positions of the Diracs with gradient
descent. Orange circles : target distribution β, blue crosses : parametric
model after convergence αθ∗ . Upper right : initial setting αθ0 .
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The ‘sample complexity’

Informal Definition
Given a distance between measures , its sample complexity
corresponds to the error made when approximating this distance
with samples of the measures.

→ Bad sample complexity implies bad generalization (over-fitting).

Known cases :
• OT : E|W (α, β)−W (α̂n, β̂n)| = O(n−1/d)
⇒ curse of dimension (Dudley ’84, Weed and Bach ’18)

• MMD : E|MMD(α, β)−MMD(α̂n, β̂n)| = O( 1√
n
)

⇒ independent of dimension (Gretton ’06)

What about E|SDε(α, β)− SDε(α̂n, β̂n)| ?

21/34
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Properties of Dual Potentials

Theorem (G., Chizat, Bach, Cuturi, Peyré ’19)

LetX ,Y ⊂ Rd bounded , and c ∈ C∞. Then the optimal pairs of
dual potentials (u, v) are uniformly bounded in the Sobolev
Hbd/2c+1(Rd) and their norm verifies :

||u||Hbd/2c+1 = O

(
1+

1
εbd/2c

)
et ||v ||Hbd/2c+1 = O

(
1+

1
εbd/2c

)
,

with constants depending on |X | (ou |Y| pour v), d , and
∥∥c(k)

∥∥
∞

pour k = 0, . . . , bd/2c+ 1.

Hbd/2c+1(Rd) is a RKHS → the dual (Dε) est the maximization of
an expectation in a RKHS ball.

22/34
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‘Sample Complexity’ of Sinkhorn Div.
Theorem (Bartlett-Mendelson ’02)

Let P ∈M1
+(X ) , ` a B-Lipschitz function and H a RKHS with

kernel k bounded on X by K . Then

EP

[
sup

{g |||g ||H6λ}
EP`(g ,X )− 1

n

n∑

i=1

`(g ,Xi )

]
6 2B

λK√
n
.

Theorem (G., Chizat, Bach, Cuturi, Peyré ’19)

Let X ,Y ⊂ Rd bounded , and c ∈ C∞ L-Lipschitz. Then

E|Wε(α, β)−Wε(α̂n, β̂n)| = O

(
e
κ
ε√
n

(
1+

1
εbd/2c

))
,

where κ = 2L|X |+ ‖c‖∞ and constants depend on |X |, |Y|, d ,
and

∥∥c(k)
∥∥
∞ pour k = 0 . . . bd/2c+ 1.
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‘Sample Complexity’ of Sinkhorn Div.

We get the following asymptotic behavior

E|Wε(α, β)−Wε(α̂n, β̂n)| = O

(
e
κ
ε

εbd/2c
√
n

)
quand ε→ 0

E|Wε(α, β)−Wε(α̂n, β̂n)| = O

(
1√
n

)
quand ε→ +∞.

→ We recover the interpolation property,
→ A large enough regularization breaks the curse of dimension.
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Generative Models
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Problem Formulation

• β the unknown measure of the date :
finite number of samples (y1, . . . , yN) ∼ β

• αθ the parametric model of the form αθ
def.
= gθ#ζ :

to sample x ∼ αθ, draw z ∼ ζ and take x = gθ(z).

We are looking for the optimal parameterθ∗ defined by

θ∗ ∈ argmin
θ

SDc,ε(αθ, β)

NB : αθ and β are only known via their samples.
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The Optimization Procedure

We want to solve by gradient descent

min
θ

SDc,ε(αθ, β)

At each descent step k instead of approximating ∇θSDc,ε(αθ, β) :

• we approximate SDc,ε(αθ(k) , β) by SD
(L)
c,ε (α̂θ(k) , β̂) via

• minibatches : draw n samples from αθ(k) and m in the dataset
(distributed according to β),

• L Sinkhorn iterations : we compute an approximation of the
SD bewteen both samples with a fixed number of iterations

• we compute the gradient ∇θSD(L)
c,ε (α̂θ(k) , β̂) by

backpropagation (with automatic differentiation library)

• we do an update θ(k+1) = θ(k) − Ck∇θSD(L)
c,ε (α̂θ(k) , β̂)
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Computing the Gradient in Practice
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Figure 4 – Scheme of the approximation of the Sinkhorn Divergence from
samples (here, gθ : z 7→ x is represented as a 2-layer NN).
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Empirical Results

SDc," � " = 1, c = || · ||22Wc," � " = 1, c = || · ||22

Figure 5 – Influence of the ‘debiasing’ of the Sinkhorn Divergence (SDε)
compared to regularized OT (Wε). Data are generated uniformly inside
an ellipse, we want to infer the parametersLes données sont générées A, ω
(covariance and center).
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Learning the cost function

In high dimension (e.g. images), the euclidean distance is not
relevant → choosing the cost c is a complex problem.

Idea : the cost should yield high values for the Sinkhorn Divergence
when αθ 6= β to differenciate between synthetic samples (from αθ)
and ‘real’ data (from β). (Li and al ’18)

We learn a parametric cost of the form :

cϕ(x , y)
def.
= ||fϕ(x)− fϕ(y)||p where fϕ : X → Rd ′ ,

The optimization problem becomes a min-max on (θ, ϕ)

min
θ

max
ϕ

SDcϕ,ε(αθ, β)

→ GAN-type problem, cost c acts as a discriminator.
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Empirical Results - CIFAR10

(a) MMD (b) ε = 100 (c) ε = 1

Figure 6 – Images generated by αθ∗ trained on CIFAR 10

MMD (Gaussian) ε = 100 ε = 10 ε = 1

4.56± 0.07 4.81± 0.05 4.79± 0.13 4.43± 0.07

Table 1 – Inception Scores on CIFAR10 (same setting as MMD-GAN
paper (Li et al. ’18)).
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Take Home Message

• Sinkhorn Divergences interpolate between OT (small ε) and
MMD (large ε) and get the best of both worlds :

• inherit geometric properties from OT
• break curse of dimension for ε large enough
• fast algorithms for implementation in ML tasks
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