Discrepancy-based Inference for Intractable Generative Models using QMC

contact: ziangniu6@gmail.com

Statistical Inference for Intractable Generative Models

Intractable Generative Models: Intractable generative models are models for which the **likelihood is unavailable** but **sampling is possible**. One is required to compute some discrepancy between the data and the generative model when doing inference.

Minimum Distance Estimators: Once a discrepancy is defined, one can easily obtain the Minimum Distance Estimators (MDE). Given the dataset $\{y_j\}_{j=1}^m \stackrel{IID}{\sim} \mathbb{Q} \in \mathcal{P}(\mathcal{X})$ and generator G_θ such that $x = G_{\theta} \sim \mathbb{P}_{\theta} \in \mathcal{P}(\mathcal{X})$, one can construct an estimator through the framework of MDE:

where $\mathbb{Q}^m = \frac{1}{m} \sum_{j=1}^m \delta_{y_j}(x)$. A common approach |D|is to solve the optimisation problem through evaluations of $D(\mathbb{P}^n_{\theta}, \mathbb{Q}^m)$ instead of the unknown optimisation problem. A closely related discrepancy family is Integral Probability Metrics (IPMs). Given a set of functions \mathcal{F} , an IPM is a probability metric which takes the form:

$$D_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) := \sup_{f\in\mathcal{F}} \left| \int_{\mathcal{X}} f(x)\mathbb{P}(\mathrm{d}x) - \int_{\mathcal{X}} f(x)\mathbb{Q}(\mathrm{d}x) \right| \qquad \text{tit} T$$

Popular metrics include Maximum Mean Discrepancy (MMD) and Wasserstein Distance:

Enhancing Sample Complexity via Quasi-Monte Carlo

(Randomized) Quasi-Monte Carlo: The essence of 1.0 (R)QMC sampling is to generate a more "diverse" set of samples from the model (see right figures).

Faster Convergence Rate: A nice theoretical result can be $\Im 0.5$ obtained if the integrand f is smooth enough and that domain \mathcal{U} is regular: for any $\epsilon > 0$

$$\left|\int_{\mathcal{U}} f(u) \mathrm{d}u - \frac{1}{n} \sum_{i=1}^{n} f(u_i)\right| = O(n^{-1+\epsilon})$$

where $\{u_i\}_{i=1}^n$ is a low discrepancy point set.

Sample Complexity Improvement:

IDEA: Replace MC points to estimate discrepancies with $\stackrel{\sim}{\prec}$ QMC/RQMC points.

Consider the generator G_{θ} is smooth enough and \mathcal{X} is regular enough, we could expect $D(\mathbb{P}_{\theta}, \mathbb{P}_{\theta}^n) = O(n^{-1+\epsilon})$, which is a great improvement compared with MC.

Ziang Niu, Johanna Meier, François-Xavier Briol code: https://github.com/johannamr/Discrepancy-based-inference-using-QMC

- 1. **MMD:** Let $\mathcal{F} = f : \mathcal{X} \to \mathbb{R} : ||f||_{\mathcal{H}_k} \leq 1$, the unit-ball of a RKHS \mathcal{H}_k with kernel $k : \mathcal{X} \times$ $\mathcal{X}
 ightarrow \mathbb{R}.$
- 2. p-Wasserstein Distance: When p = 1, Wasserstein distance is an IPM with $\mathcal{F} = \{f : f \}$ $X \to \mathbb{R} \text{ s.t.} \forall x, y \in \mathcal{X}, |f(x) - f(y)| \le c(x, y) \}.$

Other popular divergences include Sinkhorn divergence $(S_{c,p,\lambda})$, a regularized version of Wasserstein distance and Sliced Wasserstein distance $(SW_{c,p})$, which works better for high-dimensional setting. **ample Complexity:** Consider D is a metric

$$D(\mathbb{P}^{n}_{\theta}, \mathbb{Q}^{m}) - D(\mathbb{P}_{\theta}, \mathbb{Q})| \leq |D(\mathbb{P}^{n}_{\theta}, \mathbb{Q}^{m}) - D(\mathbb{P}_{\theta}, \mathbb{Q}^{m})| + |D(\mathbb{P}_{\theta}, \mathbb{Q}^{m}) - D(\mathbb{P}_{\theta}, \mathbb{Q})| \leq D(\mathbb{P}^{n}_{\theta}, \mathbb{P}_{\theta}) + D(\mathbb{Q}, \mathbb{Q}^{m})$$

Sample complexity $D(\mathbb{P}^n_{\theta}, \mathbb{P}_{\theta})$ plays a key role here! **Issue with Previous Method:** $D(\mathbb{P}^n_{\theta}, \mathbb{Q}^m)$ invovles choosing \mathbb{P}^n_{θ} and a usual choice is Monte Carlo estimand, i.e. sampling IID data $\{x_i\}_{i=1}^n$ from \mathbb{P}_{θ} . The sample complexity for MC is $D(\mathbb{P}^n_{\theta}, \mathbb{P}_{\theta}) =$ $O_p(n^{-1/2})$, which can be expensive when requiring high accuracy.

Numerical Results

Bivariate Beta Distributions: Let $\lfloor x \rfloor$ as the integer part of some $x \in \mathbb{R}$ and consider

$$G^1_{\theta} :=$$

where

$$\tilde{u}_i =$$

and

 $G_{\theta}(u)$

Theoretical Results

$$\frac{\tilde{u}_1 + \tilde{u}_3}{\tilde{u}_1 + \tilde{u}_3 + \tilde{u}_4 + \tilde{u}_5}, G_\theta^2 := \frac{\tilde{u}_2 + \tilde{u}_4}{\tilde{u}_2 + \tilde{u}_3 + \tilde{u}_4 + \tilde{u}_5}$$

$$-\sum_{k=1}^{\lfloor \theta_i \rfloor} \ln(u_{ik}) + u_{i0}, u_{i0} \sim \text{Gamma}(\theta_i - \lfloor \theta_i \rfloor, 1)$$

 $u = (u_{11}, \dots, u_{1|\theta_1|}, u_{21}, \dots, u_{5,|\theta_5|}) \sim \text{Unif}([0, 1]^s)$

where $s = \sum_{i=1}^{5} \lfloor \theta_i \rfloor$. **Inference for Multivariate g-and-k Models:** The generator for g-and-k model is

$$) := \theta_1 + \theta_2 \left(1 + 0.8 \frac{(1 - \exp(-\theta_3 z))}{(1 + \exp(-\theta_3 z))} \right) (1 + z^2)^{\theta_4}$$

where $z = \Sigma^{\frac{1}{2}} \Phi^{-1}(u)^{\top}, u \sim \text{Unif}([0,1]^d)$. Σ is a symmetric Toepliz matrix with diagonal entries equal to 1 and subdiagonals equal to θ_5 and Φ^{-1} is the inverse CDF of Gaussian.

WARNING: The performance gets worse as dimension grows due to the convergence $(\log(n)^s)n^{-1}$

Assumption 1. Given a model \mathbb{P}_{θ} with $(G_{\theta}, [0, 1]^s)$, Theorem 2 (Wasserstein). Let $\mathbb{P}_{\theta} \in \mathcal{P}_{c,1}(\mathcal{X})$ where we have access to $x_i = G_{\theta}(u_i), i = 1, ..., n$ where c is a metric on \mathcal{X} and suppose Assumption 1 holds $\{u_i\}_{i=1}^n \subset [0,1]^s \text{ form a QMC or RQMC point set.}$ with s = d = 1. Further, assume $V_{HK}(G_\theta) < \infty$.

Assumption 2. Suppose that $\mathcal{X} \subset \mathbb{R}^d$ is a compact domain and that $G_{\theta} : [0,1]^s \to \mathcal{X}$ satisfies:

$$\partial^{(1,...,1)}(G_{\theta})_{j} \in \mathcal{C}([0,1]^{s}) \text{ for all } j = 1,...,d$$

• $\partial^{v}(G_{\theta})_{j}(\cdot, : 1_{-v}) \in L^{p_{j}}([0, 1]^{|v|})$ for all j = $1, ..., d \text{ and } v \in \{0, 1\}^{s} \setminus (0, ..., 0), \text{ where } p_{i} \in$ $[1,\infty] and \sum_{j=1}^{d} p_j^{-1} \le 1.$

Theorem 1 (MMD). Let $k \in \mathcal{C}^{s \times s}(\mathcal{X}), \mathbb{P}_{\theta} \in \mathcal{P}_k(\mathcal{X})$ and suppose Assumption 1-2 hold. Then,

 $MMD(\mathbb{P}_{\theta}, \mathbb{P}_{\theta}^{n}) = O(n^{-1+\epsilon}) \quad \forall \epsilon > 0$

Then,

Theorem 3 (Sinkhorn). Let $c \in \mathcal{C}^{\infty,\infty}(\mathcal{X} \times \mathcal{X})$ and suppose $\mathbb{P}_{\theta}, \mathbb{Q} \in \mathcal{P}_{c,p}(\mathcal{X})$. Further, suppose Assumptions 1-2 hold. Then

More technical details and experiments can be found in the paper: https://arxiv.org/abs/2106.11561

 $W_{c,1}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta}^n) = O(n^{-1+\epsilon}) \quad \forall \epsilon > 0$

 $|S_{c,p,\lambda}(\mathbb{P}_{\theta},\mathbb{Q}) - S_{c,p,\lambda}(\mathbb{P}_{\theta}^{n},\mathbb{Q})| = O(n^{-1+\epsilon}) \quad \forall \epsilon > 0$