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Statistical Inference for Intractable Generative Models

Intractable Generative Models: Intractable genera-
tive models are models for which the likelihood is
unavailable but sampling is possible. One is required
to compute some discrepancy between the data and
the generative model when doing inference.

Minimum Distance Estimators: Once a discrepancy
is defined, one can easily obtain the Minimum
Distance Estimators (MDE). Given the dataset

{yj}mj=1
IID∼ Q ∈ P(X ) and generator Gθ such that

x = Gθ ∼ Pθ ∈ P(X ), one can construct an estima-
tor through the framework of MDE:

θ̂Dm = arg min
θ∈Θ

D(Pθ,Qm)

where Qm = 1
m

∑m
j=1 δyj (x). A common approach

is to solve the optimisation problem through evalua-
tions of D̂(Pnθ ,Qm) instead of the unknown optimi-
sation problem. A closely related discrepancy family
is Integral Probability Metrics (IPMs). Given a set
of functions F , an IPM is a probability metric which
takes the form:

DF (P,Q) := sup
f∈F

∣∣∣∣ ∫
X
f(x)P(dx)−

∫
X
f(x)Q(dx)

∣∣∣∣
Popular metrics include Maximum Mean Discrep-
ancy (MMD) and Wasserstein Distance:

1. MMD: Let F = f : X → R : ‖f‖Hk
≤ 1, the

unit-ball of a RKHS Hk with kernel k : X ×
X → R.

2. p−Wasserstein Distance: When p = 1,
Wasserstein distance is an IPM with F = {f :
X → R s.t.∀x, y ∈ X , |f(x)− f(y)| ≤ c(x, y)}.

Other popular divergences include Sinkhorn diver-
gence(Sc,p,λ), a regularized version of Wasserstein
distance and Sliced Wasserstein distance(SWc,p),
which works better for high-dimensional setting.
Sample Complexity: Consider D is a metric

|D(Pnθ ,Qm)−D(Pθ,Q)| ≤ |D(Pnθ ,Qm)−D(Pθ,Qm)|
+ |D(Pθ,Qm)−D(Pθ,Q)|
≤ D(Pnθ ,Pθ) +D(Q,Qm)

Sample complexity D(Pnθ ,Pθ) plays a key role here!
Issue with Previous Method: D(Pnθ ,Qm) invovles
choosing Pnθ and a usual choice is Monte Carlo es-
timand, i.e. sampling IID data {xi}ni=1 from Pθ.
The sample complexity for MC is D(Pnθ ,Pθ) =
Op(n

−1/2), which can be expensive when requiring
high accuracy.

Enhancing Sample Complexity via Quasi-Monte Carlo

(Randomized) Quasi-Monte Carlo: The essence of
(R)QMC sampling is to generate a more “diverse” set of
samples from the model (see right figures).
Faster Convergence Rate: A nice theoretical result can be
obtained if the integrand f is smooth enough and that
domain U is regular: for any ε > 0∣∣∣∣ ∫

U
f(u)du− 1

n

n∑
i=1

f(ui)

∣∣∣∣ = O(n−1+ε)

where {ui}ni=1 is a low discrepancy point set.

Sample Complexity Improvement:
IDEA: Replace MC points to estimate discrepancies with
QMC/RQMC points.
Consider the generator Gθ is smooth enough and X is
regular enough, we could expect D(Pθ,Pnθ ) = O(n−1+ε),
which is a great improvement compared with MC.

Numerical Results
Bivariate Beta Distributions: Let bxc as the inte-
ger part of some x ∈ R and consider

G1
θ :=

ũ1 + ũ3

ũ1 + ũ3 + ũ4 + ũ5
, G2

θ :=
ũ2 + ũ4

ũ2 + ũ3 + ũ4 + ũ5

where

ũi = −
bθic∑
k=1

ln(uik) + ui0, ui0 ∼ Gamma(θi − bθic, 1)

and

u = (u11, . . . , u1bθ1c, u21, . . . , u5,bθ5c) ∼ Unif([0, 1]s)

where s =
∑5
i=1bθic.

Inference for Multivariate g-and-k Models: The
generator for g-and-k model is

Gθ(u) := θ1 + θ2

(
1 + 0.8

(1− exp(−θ3z))

(1 + exp(−θ3z))

)
(1 + z2)θ4z

where z = Σ
1
2 Φ−1(u)>, u ∼ Unif([0, 1]d). Σ is

a symmetric Toepliz matrix with diagonal entries
equal to 1 and subdiagonals equal to θ5 and Φ−1 is
the inverse CDF of Gaussian.
WARNING: The performance gets worse as dimen-
sion grows due to the convergence (log(n)s)n−1

Theoretical Results
Assumption 1. Given a model Pθ with (Gθ, [0, 1]s),
we have access to xi = Gθ(ui), i = 1, . . . , n where
{ui}ni=1 ⊂ [0, 1]s form a QMC or RQMC point set.

Assumption 2. Suppose that X ⊂ Rd is a compact
domain and that Gθ : [0, 1]s → X satisfies:

• ∂(1,...,1)(Gθ)j ∈ C([0, 1]s) for all j = 1, . . . , d.

• ∂v(Gθ)j(·, : 1−v) ∈ Lpj ([0, 1]|v|) for all j =
1, . . . , d and v ∈ {0, 1}s\(0, . . . , 0), where pj ∈
[1,∞] and

∑d
j=1 p

−1
j ≤ 1.

Theorem 1 (MMD). Let k ∈ Cs×s(X ),Pθ ∈ Pk(X )
and suppose Assumption 1-2 hold. Then,

MMD(Pθ,Pnθ ) = O(n−1+ε) ∀ε > 0

Theorem 2 (Wasserstein). Let Pθ ∈ Pc,1(X ) where
c is a metric on X and suppose Assumption 1 holds
with s = d = 1. Further, assume VHK(Gθ) < ∞.
Then,

Wc,1(Pθ,Pnθ ) = O(n−1+ε) ∀ε > 0

Theorem 3 (Sinkhorn). Let c ∈ C∞,∞(X × X ) and
suppose Pθ,Q ∈ Pc,p(X ). Further, suppose Assump-
tions 1-2 hold. Then

|Sc,p,λ(Pθ,Q)− Sc,p,λ(Pnθ ,Q)| = O(n−1+ε) ∀ε > 0

More technical details and experiments can be found
in the paper: https://arxiv.org/abs/2106.11561
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