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This turns out to be a very challenging problem!
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CI testing requires assumptions
If  is continuous, any test with Type-I error control over the entire CI null

 cannot have nontrivial power against any alternative.    
(Shah and Peters ’20)
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Z

X Y

A test with Type-I error control must protect against too 
many sneaky ways  can affect both  and .Z X Y

Given a set of regularity conditions  on , one can only 
hope to control Type-I error over the smaller null hypothesis

ℛn ℒn

.H0 : HCI
0 ∩ ℛn

All laws ℒn

HCI
0 HCI

0 ∩ ℛn
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Assume we know the conditional distribution  exactly, i.e.


,


where  is the given conditional distribution.

ℒn(X ∣ Z)
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Powerful CI tests available under the MX assumption: conditional randomization 
test (CRT) for single testing and MX knockoffs for multiple testing.
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1. Compute test stat ;Tn ≡ Tn(X, Y, Z)
2. For ,b = 1,…, B

• Draw ;X̃(b)
i

ind∼ ℒ*n (Xi ∣ Z = Zi)

• Recompute ;T̃(b)
n ≡ Tn(X̃(b), Y, Z)

3. Compute threshold 
;Cn ≡ ℚ1−α[{Tn, T̃(1)

n , …, T̃(B)
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4. Reject if .Tn > Cn

Properties

• Finite-sample Type-I error control

• No assumptions on ℒn(Y ∣ Z)

• Test statistic  can be arbitraryTn

Remark:
Test statistic choice impacts power; 
often employs penalized regression or 
black-box machine learning.
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MX methods deployed by learning  from data:ℒ*n (X ∣ Z) ≡ ̂ℒn(X ∣ Z)
1. Either out of sample, based on extra unlabeled pairs ,(Xi, Zi)
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We study this question in the context of a specific MX method: the dCRT.
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Doubly robust conditional independence tests

We found that for dCRT, better estimation of  compensates for errors 
in the estimation of . This is a double robustness phenomenon!

ℒ(Y ∣ Z)
ℒ(X ∣ Z)

We claim that the dCRT itself is doubly robust!

In fact, we claim that the dCRT is asymptotically equivalent to the doubly robust 
generalized covariance measure (GCM) test (Shah and Peters, 2020).
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These rates allow for high-dimensional regressions in the “consistency regime,”  
e.g. .s = o( n /log p)
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We proved a new conditional CLT for triangular arrays!
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Thank you!
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Questions?

Thank you!
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Is dCRT robust to in-sample learning?
Simple numerical simulation: 

• ℒ(Z) ∼ N(0,I); ℒ(X ∣ Z) = N(ZTβ,1); ℒ(Y ∣ Z) = N(ZTβ,1);

•  has 5 nonzero elements;n = 1600, p = 400, β

•  estimated via the lasso of  on .ℒ(X ∣ Z) X Z

Case 1:  estimated poorly:  𝔼[Y ∣ Z] ̂μn,y(Z) ≡ 0.

Case 2:  estimated decently:                          
 obtained via lasso of  on . 
𝔼[Y ∣ Z]

̂μn,y(Z) Y Z
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Better estimate of  
improves robustness of dCRT.

𝔼[Y ∣ Z]No hope for good inference with 
poor estimate for .𝔼[Y ∣ Z]
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Corollary (Niu et al ’24; informal). Assume
1. , , . RMSE( ̂μn,x) = oP(1) RMSE( ̂μn,y) = oP(1) RMSE( ̂μn,x) ⋅ RMSE( ̂μn,y) = oP(n−1/2)
2. The estimated variances are consistent in the following sense: 

1
n

n

∑
i=1

(Var ̂ℒn
[Xi ∣ Zi] − Varℒn[Xi ∣ Zi])Varℒn[Yi ∣ Zi]

p
→ 0.
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[Xi ∣ Zi] − Varℒn[Xi ∣ Zi])Varℒn[Yi ∣ Zi]

p
→ 0.

Then, for any sequence  of local alternatives, the dCRT is asymptotically equivalent to 
the GCM test, i.e.

ℒn

lim
n→∞

ℙℒn
[GCM test and dCRT coincide] = 1.

• In large samples, GCM is preferable to dCRT because it avoids resampling.
• In small samples, dCRT may still be preferable to GCM.

dCRT and GCM have same asymptotic power
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.Y = Xβ + g(Z) + ϵ; ϵ ∼ N(0,σ2)
For this model, the oracle product-of-residuals test statistic

Toracle
n (X, Y, Z) ≡

1

n

n

∑
i=1

(Xi − μn,x(Zi))(Yi − μn,y(Zi))

is efficient score statistic, with optimal asymptotic power against local alternatives.

Then, a test based on  is the most powerful test ofToracle
n (X, Y, Z)

.HSP
0 : β = 0 versus HSP

1 : β = h/ n

The GCM statistic  is asymptotically equivalent to  
under Shah and Peters’s conditions, so GCM is also most powerful.

Tn(X, Y, Z) Toracle
n (X, Y, Z)
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Testing the CI null  is not the same as testing the semiparametric nullHCI
0 ∩ ℛn

.HSP
0 : β = 0 in the model Y = Xβ + g(Z) + ϵ; ϵ ∼ N(0,σ2)

However, under certain conditions                                                                                   
the SP null is nested inside the CI null.

Therefore, any test controlling Type-I error on  must also control Type-I error 
on , and so its power is bounded above by that of the GCM test.

HCI
0 ∩ ℛn

HSP
0

Theorem (Niu et al ’24; informal). Under Shah and Peters’s conditions, the GCM test 
of   is asymptotically most powerful against .HCI

0 ∩ ℛn HSP
1 : Y = Xh/ n + g(Z) + ϵ
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For alternatives without interactions or heteroskedasticity:

• GCM is already the asymptotically most powerful test against local partially 
linear alternatives, so no use trying CRT with fancier test statistics.

• Similar statement is true for generalized partially linear models.

• GCM is most powerful against local (generalized) linear model alternatives.

For alternatives with interactions or heteroskedasticity:

• We would not expect GCM (or dCRT) to be optimal, and alternative 
methods may have better power.
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1

1Scheidegger et al ’21, Zhong et al ’21, Lundborg et al. ’22
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,ℒ(Z) = N(0,Σ(ρ)), ℒ(X ∣ Z) = N(ZTβ,1), ℒ(Y ∣ X, Z) = N(Xθ + ZTβ,1)

where  and .Σj1,j2(ρ) = ρ|j1−j2| βj = {ν, if j ≤ s
0, if j > s

Parameters  and  control degree of confounding and signal strength.ν θ

Methods compared:

• dCRT and GCM (with lasso and post-lasso)

• Maxway CRT (implemented with data splitting)
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Takeaways

• GCM and dCRT perform similarly, 
consistent with asymptotic theory.

• Lasso-based methods can have very 
inflated Type-I error in difficult settings.

• Maxway performs better than lasso-
based dCRT and GCM, consistent with 
results of Li and Liu ’22. 

• Post-lasso-based dCRT and GCM 
typically outperform Maxway CRT.

• Best-performing post-lasso methods 
break down as problem becomes too 
difficult, i.e. S & P’s conditions violated.

Remark

• We expect, for smaller samples sizes or 
more discrete data, that dCRT can have 
better Type-I error control than GCM.
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Numerical simulations: Power

30

Note: All methods subjected to “oracle 
calibration” for fair power comparison.

Takeaways

• GCM tends to outperform dCRT.

• Lasso outperforms post-lasso, 
suggesting bias-variance trade-off.

• Maxway CRT has lowest power, due to 
data splitting. Better performance in 
separate semi-supervised simulation. 


