Double robustness of a model-X conditional independence test

Lawrence David Brown Student Workshop March 22, 2023

Ziang Niu

Niu*, Chakraborty*, Dukes, & Katsevich. Reconciling model-X and doubly robust approaches to conditional independence testing. *Annals of Statistics*, 2024.

Abhinav Chakraborty

Oliver Dukes

Eugene Katsevich

Statistical task: Test whether a response variable $\mathbf{Y} \in \mathbb{R}$ is associated with a predictor variable $\mathbf{X} \in \mathbb{R}$ when controlling for covariates $\mathbf{Z} \in \mathbb{R}^p$, given *n* i.i.d. samples (X_i, Y_i, Z_i) from a joint distribution $\mathscr{L}_n(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$.

Statistical task: Test whether a response variable $\mathbf{Y} \in \mathbb{R}$ is associated with a predictor variable $\mathbf{X} \in \mathbb{R}$ when controlling for covariates $\mathbf{Z} \in \mathbb{R}^p$, given *n* i.i.d. samples (X_i, Y_i, Z_i) from a joint distribution $\mathscr{L}_n(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$.

Hypothesis formulation: In the joint distribution $\mathscr{L}_n(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$, test the null hypothesis of conditional independence (CI):

samples (X_i, Y_i, Z_i) from a joint distribution $\mathscr{L}_n(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$.

hypothesis of conditional independence (CI):

- Statistical task: Test whether a response variable $Y \in \mathbb{R}$ is associated with a predictor variable $X \in \mathbb{R}$ when controlling for covariates $Z \in \mathbb{R}^p$, given *n* i.i.d.
- **Hypothesis formulation:** In the joint distribution $\mathscr{L}_n(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$, test the null
 - $H_0^{\mathsf{CI}}: \mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}.$

samples (X_i, Y_i, Z_i) from a joint distribution $\mathscr{L}_n(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$.

hypothesis of conditional independence (CI):

- Statistical task: Test whether a response variable $Y \in \mathbb{R}$ is associated with a predictor variable $X \in \mathbb{R}$ when controlling for covariates $Z \in \mathbb{R}^p$, given *n* i.i.d.
- **Hypothesis formulation:** In the joint distribution $\mathscr{L}_n(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$, test the null
 - $H_0^{\mathsf{CI}}: \mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}.$
 - This turns out to be a very challenging problem!

CI testing requires assumptions

If Z is continuous, any test with Type-I error control over the entire CI null H_0^{CI} : X \perp Y | Z cannot have nontrivial power against any alternative. (Shah and Peters '20)

CI testing requires assumptions

If Z is continuous, any test with Type-I error control over the entire CI null H_0^{CI} : X \perp Y | Z cannot have nontrivial power against any alternative. (Shah and Peters '20)

A test with Type-I error control must protect against too many sneaky ways Z can affect both X and Y.

Cl testing requires assumptions

If \mathbf{Z} is continuous, any test with Type-I error control over the entire CI null $H_0^{\mathsf{CI}}: \mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$ cannot have nontrivial power against any alternative. (Shah and Peters '20)

A test with Type-I error control must protect against too many sneaky ways Z can affect both X and Y.

Given a set of regularity conditions \mathscr{R}_n on \mathscr{L}_n , one can only hope to control Type-I error over the smaller null hypothesis

$$H_0: H_0^{\mathsf{Cl}} \cap \mathscr{R}_n$$

$$H_0^{\mathsf{Cl}} \qquad H_0^{\mathsf{Cl}} \cap \mathscr{R}_n$$

 n^{\bullet}

The model-X (MX) assumption (Candès et al '18)

Assume we know the conditional distribution $\mathscr{L}_n(\mathbf{X} \mid \mathbf{Z})$ exactly, i.e. $\mathscr{R}_n \equiv \{\mathscr{L}_n : \mathscr{L}_n(\mathbf{X} \mid \mathbf{Z}) = \mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})\},\$ where $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ is the given conditional distribution.

The model-X (MX) assumption (Candès et al '18)

Assume we know the conditional distribution $\mathscr{L}_n(\mathbf{X} \mid \mathbf{Z})$ exactly, i.e. $\mathscr{R}_n \equiv \{\mathscr{L}_n : \mathscr{L}_n(\mathbf{X} \mid \mathbf{Z}) = \mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})\},\$ where $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ is the given conditional distribution.

Reasonable if conditional distribution $\mathscr{L}_n(\mathbf{X} \mid \mathbf{Z})$ controlled by experimenter.¹

¹Ham et al '22, Aufiero and Janson '22

The model-X (MX) assumption (Candès et al '18)

where $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ is the given conditional distribution.

Reasonable if conditional distribution $\mathscr{L}_n(\mathbf{X} \mid \mathbf{Z})$ controlled by experimenter.¹

Powerful CI tests available under the MX assumption: conditional randomization test (CRT) for single testing and MX knockoffs for multiple testing.²

Assume we know the conditional distribution $\mathscr{L}_{n}(\mathbf{X} \mid \mathbf{Z})$ exactly, i.e.

$\mathscr{R}_n \equiv \{\mathscr{L}_n : \mathscr{L}_n(\mathbf{X} \mid \mathbf{Z}) = \mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})\},\$

¹Ham et al '22, Aufiero and Janson '22

²Candes et al '18

Conditional randomization test

1. Compute test stat $T_n \equiv T_n(X, Y, Z)$;

- 1. Compute test stat $T_n \equiv T_n(X, Y, Z)$;
- 2. For b = 1, ..., B,

- 1. Compute test stat $T_n \equiv T_n(X, Y, Z)$;
- 2. For b = 1, ..., B,
 - Draw $\tilde{X}_i^{(b)} \stackrel{\text{ind}}{\sim} \mathscr{L}_n^*(X_i \mid \mathbb{Z} = Z_i);$

- 1. Compute test stat $T_n \equiv T_n(X, Y, Z)$;
- 2. For b = 1, ..., B,
 - Draw $\tilde{X}_i^{(b)} \stackrel{\text{ind}}{\sim} \mathscr{L}_n^*(X_i \mid \mathbf{Z} = Z_i);$
 - Recompute $\tilde{T}_n^{(b)} \equiv T_n(\tilde{X}^{(b)}, Y, Z);$

- 1. Compute test stat $T_n \equiv T_n(X, Y, Z)$;
- 2. For b = 1, ..., B,
 - Draw $\tilde{X}_i^{(b)} \stackrel{\text{ind}}{\sim} \mathscr{L}_n^*(X_i \mid \mathbf{Z} = Z_i);$
 - Recompute $\tilde{T}_n^{(b)} \equiv T_n(\tilde{X}^{(b)}, Y, Z);$
- 3. Compute threshold $C_n \equiv \mathbb{Q}_{1-\alpha}[\{T_n, \tilde{T}_n^{(1)}, \dots, \tilde{T}_n^{(B)}\}];$

Conditional randomization test

- 1. Compute test stat $T_n \equiv T_n(X, Y, Z)$;
- 2. For b = 1, ..., B,
 - Draw $\tilde{X}_i^{(b)} \stackrel{\text{ind}}{\sim} \mathscr{L}_n^*(X_i \mid \mathbb{Z} = Z_i);$
 - Recompute $\tilde{T}_n^{(b)} \equiv T_n(\tilde{X}^{(b)}, Y, Z);$
- 3. Compute threshold $C_n \equiv \mathbb{Q}_{1-\alpha}[\{T_n, \tilde{T}_n^{(1)}, \dots, \tilde{T}_n^{(B)}\}];$

4. Reject if $T_n > C_n$.

The conditional randomization test (CRT) **Conditional randomization test Properties** 1. Compute test stat $T_n \equiv T_n(X, Y, Z)$; 2. For b = 1, ..., B, • Draw $\tilde{X}_{i}^{(b)} \stackrel{\text{ind}}{\sim} \mathscr{L}_{n}^{*}(X_{i} \mid \mathbb{Z} = Z_{i});$ • Recompute $\tilde{T}_{n}^{(b)} \equiv T_{n}(\tilde{X}^{(b)}, Y, Z);$ $C_{n} \equiv \mathbb{Q}_{1-\alpha}[\{T_{n}, \tilde{T}_{n}^{(1)}, \dots, \tilde{T}_{n}^{(B)}\}];$

- 3. Compute threshold

Reject if $T_n > C_n$. 4.

Conditional randomization test

- 1. Compute test stat $T_n \equiv T_n(X, Y, Z)$;
- 2. For b = 1, ..., B,
 - Draw $\tilde{X}_i^{(b)} \stackrel{\text{ind}}{\sim} \mathscr{L}_n^*(X_i \mid \mathbb{Z} = Z_i);$
 - Recompute $\tilde{T}_n^{(b)} \equiv T_n(\tilde{X}^{(b)}, Y, Z);$
- 3. Compute threshold $C_n \equiv \mathbb{Q}_{1-\alpha}[\{T_n, \tilde{T}_n^{(1)}, \dots, \tilde{T}_n^{(B)}\}];$

4. Reject if $T_n > C_n$.

Properties

Conditional randomization test

- 1. Compute test stat $T_n \equiv T_n(X, Y, Z)$;
- 2. For b = 1, ..., B,
 - Draw $\tilde{X}_i^{(b)} \stackrel{\text{ind}}{\sim} \mathscr{L}_n^*(X_i \mid \mathbb{Z} = Z_i);$
 - Recompute $\tilde{T}_n^{(b)} \equiv T_n(\tilde{X}^{(b)}, Y, Z);$
- 3. Compute threshold $C_n \equiv \mathbb{Q}_{1-\alpha}[\{T_n, \tilde{T}_n^{(1)}, \dots, \tilde{T}_n^{(B)}\}];$

4. Reject if $T_n > C_n$.

Properties

- Finite-sample Type-I error control
- No assumptions on $\mathscr{L}_n(\mathbf{Y} \mid \mathbf{Z})$

6

Conditional randomization test

- 1. Compute test stat $T_n \equiv T_n(X, Y, Z)$;
- 2. For b = 1, ..., B,
 - Draw $\tilde{X}_i^{(b)} \stackrel{\text{ind}}{\sim} \mathscr{L}_n^*(X_i \mid \mathbb{Z} = Z_i);$
 - Recompute $\tilde{T}_n^{(b)} \equiv T_n(\tilde{X}^{(b)}, Y, Z);$
- 3. Compute threshold $C_n \equiv \mathbb{Q}_{1-\alpha}[\{T_n, \tilde{T}_n^{(1)}, \dots, \tilde{T}_n^{(B)}\}];$

4. Reject if $T_n > C_n$.

Properties

- Finite-sample Type-I error control
- No assumptions on $\mathscr{L}_n(\mathbf{Y} \mid \mathbf{Z})$
- Test statistic T_n can be arbitrary

Conditional randomization test

- 1. Compute test stat $T_n \equiv T_n(X, Y, Z)$;
- 2. For b = 1, ..., B,
 - Draw $\tilde{X}_{i}^{(b)} \stackrel{\text{ind}}{\sim} \mathscr{L}_{n}^{*}(X_{i} \mid \mathbf{Z} = Z_{i});$
 - Recompute $\tilde{T}_{n}^{(b)} \equiv T_{n}(\tilde{X}^{(b)}, Y, Z);$
- 3. Compute threshold $C_{n} \equiv \mathbb{Q}_{1-\alpha}[\{T_{n}, \tilde{T}_{n}^{(1)}, \dots, \tilde{T}_{n}^{(B)}\}];$

4. Reject if $T_n > C_n$.

Properties

- Finite-sample Type-I error control
- No assumptions on $\mathscr{L}_n(\mathbf{Y} \mid \mathbf{Z})$
- Test statistic T_n can be arbitrary

Remark:

Test statistic choice impacts power;¹ often employs penalized regression or black-box machine learning.

Challenge: $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ usually an approximation

Challenge: $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ usually an approximation

Aside from controlled experiments, the MX assumption is typically too strong.

Challenge: $\mathscr{L}_n^*(X \mid Z)$ usually an approximation

- Aside from controlled experiments, the MX assumption is typically too strong.
- MX motivated by genome-wide association studies, where plausible parametric model is available for $\mathscr{L}_n(X \mid Z)$; parameters must still be learned from data.

Challenge: $\mathscr{L}_n^*(X \mid Z)$ usually an approximation

MX methods deployed by learning \mathscr{L}

- Aside from controlled experiments, the MX assumption is typically too strong.
- MX motivated by genome-wide association studies, where plausible parametric model is available for $\mathscr{L}_n(\mathbf{X} \mid \mathbf{Z})$; parameters must still be learned from data.

$$\mathcal{L}_n^*(\mathbf{X} \mid \mathbf{Z}) \equiv \widehat{\mathscr{L}}_n(\mathbf{X} \mid \mathbf{Z})$$
 from data:

Challenge: $\mathscr{L}_n^*(X \mid Z)$ usually an approximation

MX methods deployed by learning \mathscr{L}

1. Either out of sample, based on extra unlabeled pairs (X_i, Z_i) ,

- Aside from controlled experiments, the MX assumption is typically too strong.
- MX motivated by genome-wide association studies, where plausible parametric model is available for $\mathscr{L}_n(\mathbf{X} \mid \mathbf{Z})$; parameters must still be learned from data.

$${}_{n}^{*}(\mathbf{X} \mid \mathbf{Z}) \equiv \widehat{\mathscr{L}}_{n}(\mathbf{X} \mid \mathbf{Z})$$
 from data:

Challenge: $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ usually an approximation

- Aside from controlled experiments, the MX assumption is typically too strong.
- MX motivated by genome-wide association studies, where plausible parametric model is available for $\mathscr{L}_n(\mathbf{X} \mid \mathbf{Z})$; parameters must still be learned from data.
- MX methods deployed by learning \mathscr{L}
 - 1. Either out of sample, based on extra unlabeled pairs (X_i, Z_i) ,
 - 2. Or in sample, based on the same data used for testing (more common).

$${}_{n}^{*}(\mathbf{X} \mid \mathbf{Z}) \equiv \widehat{\mathscr{L}}_{n}(\mathbf{X} \mid \mathbf{Z})$$
 from data:

Case 1: $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ learned on large auxiliary dataset

Case 1: $\mathscr{L}_n^*(X \mid Z)$ learned on large auxiliary dataset

Berrett et al '20:

If $\mathscr{L}_n(\mathbf{X} \mid \mathbf{Z})$ obtained from well-specified OLS based on N auxiliary samples, then $\mathbb{P}[\text{false rejection}] \leq \alpha + O_p\left(\sqrt{\frac{n \cdot \dim(\mathbf{Z})}{N}}\right)$

Case 1: $\mathscr{L}_n^*(X \mid Z)$ learned on large auxiliary dataset

Berrett et al '20:

If $\mathscr{L}_n(\mathbf{X} \mid \mathbf{Z})$ obtained from well-specified OLS based on N auxiliary samples, then $\mathbb{P}[\text{false rejection}] \leq \alpha + O_p\left(\sqrt{\frac{n \cdot \dim(\mathbf{Z})}{N}}\right)$

CRT properties if $N \gg n \cdot \dim(\mathbf{Z})$

- Finite-sample Type-I error control
- No assumptions on L_n(Y | Z)
 Test statistic T_n can be arbitrary

Case 1: $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ learned on large auxiliary dataset

Berrett et al '20:

If $\mathscr{L}_n(\mathbf{X} \mid \mathbf{Z})$ obtained from well-specified OLS based on N auxiliary samples, then $\mathbb{P}[\text{false rejection}] \le \alpha + O_p\left(\sqrt{\frac{n \cdot \dim(\mathbf{Z})}{N}}\right)$

CRT properties if $N \gg n \cdot \dim(\mathbb{Z})$ Asymptotic

- Finite-sample Type-I error control
- No assumptions on L_n(Y | Z)
 Test statistic T_n can be arbitrary

Case 2: $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ learned in sample

MX method applied as if $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ were known (more common in practice).

- **Theory:** For worst-case test statistics, no hope for Type-I error control.¹ Beyond that, few existing results.
- MX method applied as if $\mathscr{L}_n^*(X \mid Z)$ were known (more common in practice).

¹Berrett et al '20

- **Theory:** For worst-case test statistics, no hope for Type-I error control.¹ Beyond that, few existing results.
- Simulations: MX methods robust to in-sample learning of $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})^2$

MX method applied as if $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ were known (more common in practice).

- **Theory:** For worst-case test statistics, no hope for Type-I error control.¹ Beyond that, few existing results.
- Simulations: MX methods robust to in-sample learning of $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})^2$

Open question:

MX method applied as if $\mathscr{L}_n^*(X \mid Z)$ were known (more common in practice).

- **Theory:** For worst-case test statistics, no hope for Type-I error control.¹ Beyond that, few existing results.
- Simulations: MX methods robust to in-sample learning of $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})^2$

Open question:

MX method applied as if $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ were known (more common in practice).

How robust are MX methods when $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ learned in sample?

- Theory: For worst-case test statistics, no hope for Type-I error control. Beyond that, few existing results.
- Simulations: MX methods robust to in-sample learning of $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})^2$

Open question:

We study this question in the context of a specific MX method: the dCRT.

MX method applied as if $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ were known (more common in practice).

How robust are MX methods when $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ learned in sample?

The distilled CRT and its in-sample approximation Let $\mu_{n,x}(\mathbf{Z}) \equiv \mathbb{E}_{\mathscr{L}_n}[\mathbf{X} \mid \mathbf{Z}]$ and $\mu_{n,y}(\mathbf{Z}) \equiv \mathbb{E}_{\mathscr{L}_n}[\mathbf{Y} \mid \mathbf{Z}].$

Let $\mu_{n,x}(\mathbf{Z}) \equiv \mathbb{E}_{\mathscr{L}_n}[\mathbf{X} \mid \mathbf{Z}]$ and $\mu_{n,y}(\mathbf{Z})$

The dCRT¹ is an instance of the CRT, with $T_n(X, Y, Z) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i)$

is known by the MX assumption.

$$) \equiv \mathbb{E}_{\mathscr{L}_{n}}[\mathbf{Y} \mid \mathbf{Z}].$$

$$(X_i - \mu_{n,x}(Z_i))(Y_i - \hat{\mu}_{n,y}(Z_i)),$$

where $\hat{\mu}_{n,v}(\mathbf{Z})$ is obtained via in-sample machine learning of Y on Z and $\mu_{n,x}(\mathbf{Z})$

¹Liu et al '22

Let $\mu_{n,x}(\mathbf{Z}) \equiv \mathbb{E}_{\mathscr{L}_n}[\mathbf{X} \mid \mathbf{Z}]$ and $\mu_{n,y}(\mathbf{Z})$

The dCRT¹ is an instance of the CRT, with $T_n(X, Y, Z) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n (A_i)^{(n)}$

is known by the MX assumption.

The approximate dCRT with $\widehat{\mathscr{D}}_{n}(X \mid Z)$ learned in sample is the same, except $T_n(X, Y, Z) \equiv \frac{1}{r} \sum_{n=1}^{n} \sum_{n=$ $n_{i=1}$

$$) \equiv \mathbb{E}_{\mathscr{L}_{n}}[\mathbf{Y} \mid \mathbf{Z}].$$

$$(X_i - \mu_{n,x}(Z_i))(Y_i - \hat{\mu}_{n,y}(Z_i)),$$

where $\hat{\mu}_{n,y}(\mathbf{Z})$ is obtained via in-sample machine learning of Y on Z and $\mu_{n,x}(\mathbf{Z})$

$$(X_i - \hat{\mu}_{n,x}(Z_i))(Y_i - \hat{\mu}_{n,y}(Z_i)).$$

¹Liu et al '22

Let $\mu_{n,x}(\mathbf{Z}) \equiv \mathbb{E}_{\mathscr{L}_n}[\mathbf{X} \mid \mathbf{Z}]$ and $\mu_{n,y}(\mathbf{Z})$

The dCRT¹ is an instance of the CRT, with $T_n(X, Y, Z) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n (A_i)^{(n)}$

is known by the MX assumption.

The approximate dCRT with $\widehat{\mathscr{D}}_{n}(X \mid Z)$ learned in sample is the same, except $T_n(X, Y, Z) \equiv \frac{1}{7} \sum_{n=1}^{n} \sum_{n=$ $\sqrt{n} \sum_{i=1}^{n}$

$$) \equiv \mathbb{E}_{\mathscr{L}_{n}}[\mathbf{Y} \mid \mathbf{Z}].$$

$$(X_i - \mu_{n,x}(Z_i))(Y_i - \hat{\mu}_{n,y}(Z_i)),$$

where $\hat{\mu}_{n,y}(\mathbf{Z})$ is obtained via in-sample machine learning of Y on Z and $\mu_{n,x}(\mathbf{Z})$

$$\begin{array}{l} (X_i - \hat{\mu}_{n,x}(Z_i))(Y_i - \hat{\mu}_{n,y}(Z_i)). \\ \text{Resampling distribution} \\ \text{changed to } \hat{\mathscr{L}}(X_i \mid Z_i) \end{array}^{1\text{Liu et al '22}} \end{array}$$

Let $\mu_{n,x}(\mathbf{Z}) \equiv \mathbb{E}_{\mathscr{L}_n}[\mathbf{X} \mid \mathbf{Z}]$ and $\mu_{n,y}(\mathbf{Z})$

The dCRT¹ is an instance of the CRT, with $T_n(X, Y, Z) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i)$

where $\hat{\mu}_{n,y}(\mathbf{Z})$ is obtained via in-sample machine learning of Y on Z and $\mu_{n,x}(\mathbf{Z})$ is known by the MX assumption.

$$) \equiv \mathbb{E}_{\mathscr{L}_{n}}[\mathbf{Y} \mid \mathbf{Z}].$$

$$(X_i - \mu_{n,x}(Z_i))(Y_i - \hat{\mu}_{n,y}(Z_i)),$$

Resampling distribution changed to $\widehat{\mathscr{L}}(X_i | Z_i)$ ¹Liu et al '22 10

Is dCRT robust to in-sample learning?

Simple numerical simulation:

• $\mathscr{L}(\mathbf{X} \mid \mathbf{Z})$ estimated via the lasso of X on Z.

Simple numerical simulation:

 $\mathscr{L}(\mathbf{X} \mid \mathbf{Z})$ estimated via the lasso of X on Z. •

Case 1: $\mathbb{E}[\mathbf{Y} \mid \mathbf{Z}]$ estimated poorly: $\hat{\mu}_{n,y}(\mathbf{Z}) \equiv 0$.

Estimate of E[YIZ] — Intercept–only

Simple numerical simulation:

 $\mathscr{L}(\mathbf{X} \mid \mathbf{Z})$ estimated via the lasso of X on Z. •

Case 1: $\mathbb{E}[\mathbf{Y} \mid \mathbf{Z}]$ estimated poorly: $\hat{\mu}_{n,v}(\mathbf{Z}) \equiv 0$.

Case 2: $\mathbb{E}[Y \mid Z]$ estimated decently: $\widehat{\mu}_{n.v}(\mathbf{Z})$ obtained via lasso of *Y* on *Z*.

Estimate of E[YIZ] — Intercept-only ---- LASSO

Simple numerical simulation:

• $\mathscr{L}(\mathbf{X} \mid \mathbf{Z})$ estimated via the lasso of X on Z.

Case 1: $\mathbb{E}[\mathbf{Y} \mid \mathbf{Z}]$ estimated poorly: $\hat{\mu}_{n,y}(\mathbf{Z}) \equiv 0$.

Case 2: $\mathbb{E}[\mathbf{Y} \mid \mathbf{Z}]$ estimated decently: $\hat{\mu}_{n,y}(\mathbf{Z})$ obtained via lasso of *Y* on *Z*.

No hope for good inference with poor estimate for $\mathbb{E}[Y \mid Z]$.

Estimate of E[YIZ] --- Intercept-only ---- LASSO

Simple numerical simulation:

 $\mathscr{L}(\mathbf{X} \mid \mathbf{Z})$ estimated via the lasso of X on Z. ullet

Case 1: $\mathbb{E}[\mathbf{Y} \mid \mathbf{Z}]$ estimated poorly: $\hat{\mu}_{n,v}(\mathbf{Z}) \equiv 0$.

Case 2: $\mathbb{E}[Y \mid Z]$ estimated decently: $\widehat{\mu}_{n,v}(\mathbf{Z})$ obtained via lasso of *Y* on *Z*.

No hope for good inference with poor estimate for $\mathbb{E}[Y \mid Z]$.

We found that for dCRT, better estimation of $\mathscr{L}(\mathbf{Y} \mid \mathbf{Z})$ compensates for errors in the estimation of $\mathscr{L}(X \mid Z)$. This is a double robustness phenomenon!

We found that for dCRT, better estimation of $\mathscr{L}(\mathbf{Y} \mid \mathbf{Z})$ compensates for errors in the estimation of $\mathscr{L}(X \mid Z)$. This is a double robustness phenomenon!

We claim that the dCRT itself is doubly robust!

- We found that for dCRT, better estimation of $\mathscr{L}(\mathbf{Y} \mid \mathbf{Z})$ compensates for errors in the estimation of $\mathscr{L}(X \mid Z)$. This is a double robustness phenomenon!
- We claim that the dCRT itself is doubly robust!
- In fact, we claim that the dCRT is asymptotically equivalent to the doubly robust generalized covariance measure (GCM) test (Shah and Peters, 2020).

1. Fit an approximation $\hat{\mu}_{n,x}(\mathbf{Z})$ of $\mu_{n,x}(\mathbf{Z}) \equiv \mathbb{E}_{\mathscr{L}_n}[\mathbf{X} \mid \mathbf{Z}]$ via machine learning;

- 3. Compute $T_n(X, Y, Z) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \hat{\mu}_{n,x}(Z_i))(Y_i \hat{\mu}_{n,y}(Z_i))$

- 3. Compute $T_n(X, Y, Z) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \hat{\mu}_{n,x}(Z_i))(Y_i \hat{\mu}_{n,y}(Z_i))$ 4. Compute $(S_n^{\text{GCM}})^2(X, Y, Z) \equiv \mathbb{V}\{(X_i \hat{\mu}_{n,x}(Z_i))(Y_i \hat{\mu}_{n,y}(Z_i))\}$

- 3. Compute $T_n(X, Y, Z) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \hat{\mu}_{n,x}(Z_i))(Y_i \hat{\mu}_{n,y}(Z_i))$ 4. Compute $(S_n^{\text{GCM}})^2(X, Y, Z) \equiv \mathbb{V}\{(X_i \hat{\mu}_{n,x}(Z_i))(Y_i \hat{\mu}_{n,y}(Z_i))\}$ \longleftarrow Sample variance

- 3. Compute $T_n(X, Y, Z) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \hat{\mu}_{n,x}(Z_i))(Y_i \hat{\mu}_{n,y}(Z_i))$
- 5. Reject if $\frac{T_n(X, Y, Z)}{S_n^{\text{GCM}}(X, Y, Z)} > z_{1-\alpha}.$

- 3. Compute $T_n(X, Y, Z) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \hat{\mu}_{n,x}(Z_i))(Y_i \hat{\mu}_{n,y}(Z_i))$
- 5. Reject if $\frac{T_n(X, Y, Z)}{S_n^{GCM}(X, Y, Z)} > z_{1-\alpha}$. Asymptotic threshold, rather than resampling-based.

Double robustness of the GCM test

Double robustness of the GCM test

The GCM test is doubly robust (Shah and Peters '20)

Double robustness of the GCM test

The GCM test is doubly robust (Shah and Peters '20)

If $\text{RMSE}(\hat{\mu}_{n,x}) = o_P(1)$, $\text{RMSE}(\hat{\mu}_{n,y}) = o_P(1)$, $\text{RMSE}(\hat{\mu}_{n,x}) \cdot \text{RMSE}(\hat{\mu}_{n,y}) = o_P(n^{-1/2})$ for each $\mathscr{L}_n \in H_0 \equiv H_0^{\mathsf{CI}} \cap \mathscr{R}_n$, then GCM test has asymptotic Type-I error control.
Double robustness of the GCM test

The GCM test is doubly robust (Shah and Peters '20)

e.g. $s = o(\sqrt{n}/\log p)$.

If $\text{RMSE}(\hat{\mu}_{n,x}) = o_P(1)$, $\text{RMSE}(\hat{\mu}_{n,y}) = o_P(1)$, $\text{RMSE}(\hat{\mu}_{n,x}) \cdot \text{RMSE}(\hat{\mu}_{n,y}) = o_P(n^{-1/2})$ for each $\mathscr{L}_n \in H_0 \equiv H_0^{\mathsf{CI}} \cap \mathscr{R}_n$, then GCM test has asymptotic Type-I error control.

These rates allow for high-dimensional regressions in the "consistency regime,"

For small *n*, dCRT resampling distribution need not be normal.

10 samples

For small *n*, dCRT resampling distribution need not be normal.

10 samples

For small *n*, dCRT resampling distribution need not be normal.

For large *n*, resampling recapitulates the asymptotic normal distribution.

10 samples

25 samples -2.5 0.0 2.5 5.0 **Resampled statistic**

250 samples

For small *n*, dCRT resampling distribution need not be normal.

For large *n*, resampling recapitulates the asymptotic normal distribution.

We show that (normalized) dCRT resampling distribution converges to N(0,1)conditionally on the data: conditional CDF converges to $\Phi(x)$ in probability.

For small *n*, dCRT resampling distribution need not be normal.

For large *n*, resampling recapitulates the asymptotic normal distribution.

We show that (normalized) dCRT resampling distribution converges to N(0,1)conditionally on the data: conditional CDF converges to $\Phi(x)$ in probability.

Technical challenge: the resampling distribution $\mathscr{L}(X_i | Z_i)$ is based on estimate which is varying across *i* and *n* and resamples are only conditionally independent.

For small *n*, dCRT resampling distribution need not be normal.

For large *n*, resampling recapitulates the asymptotic normal distribution.

We show that (normalized) dCRT resampling distribution converges to N(0,1)conditionally on the data: conditional CDF converges to $\Phi(x)$ in probability.

Technical challenge: the resampling distribution $\mathscr{L}(X_i | Z_i)$ is based on estimate which is varying across *i* and *n* and resamples are only conditionally independent.

We proved a new conditional CLT for triangular arrays!

Theorem (Niu et al '24; informal). Assume

- 1. $\text{RMSE}(\hat{\mu}_{n,x}) = o_P(1), \text{RMSE}(\hat{\mu}_{n,y})$
 - $\text{RMSE}(\hat{\mu}_{n,x}) \cdot \text{RMSE}(\hat{\mu}_{n,y}) = o_P(n^{-1/2}).$
- 2. The estimated variances are "consistent" in some sense.

$$p_{P}(1) = o_{P}(1),$$

 $n^{-1/2}).$

Then, for any $\mathscr{L}_n \in H_0$, the dCRT is asymptotically equivalent to the GCM test.

Theorem (Niu et al '24; informal). Assume

- 1. $\text{RMSE}(\hat{\mu}_{n,x}) = o_P(1), \text{RMSE}(\hat{\mu}_{n,y}) = o_P(1),$ $\text{RMSE}(\hat{\mu}_{n,x}) \cdot \text{RMSE}(\hat{\mu}_{n,y}) = o_P(n^{-1/2}).$
- 2. The estimated variances are "consistent" in some sense.

Corollary (Niu et al '24; informal). The dCRT is doubly robust, in the sense that it controls Type-I error under assumptions 1 and 2.

Then, for any $\mathscr{L}_n \in H_0$, the dCRT is asymptotically equivalent to the GCM test.

Theorem (Niu et al '24; informal). Assume

- 1. $\text{RMSE}(\hat{\mu}_{n,x}) = o_P(1), \text{RMSE}(\hat{\mu}_{n,y}) = o_P(1),$ $\text{RMSE}(\hat{\mu}_{n,x}) \cdot \text{RMSE}(\hat{\mu}_{n,y}) = o_P(n^{-1/2}).$
- 2. The estimated variances are "consistent" in some sense.

that it controls Type-I error under assumptions 1 and 2.

Then, for any $\mathscr{L}_n \in H_0$, the dCRT is asymptotically equivalent to the GCM test.

Corollary (Niu et al '24; informal). The dCRT is doubly robust, in the sense

Fitting $\mathbb{E}[\mathbf{Y} \mid \mathbf{Z}]$ improves not just power; it improves robustness as well.

(Previous work)

CRT properties under **MX** assumption ($\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ known)

Finite-sample Type-I error control

- No assumptions on $\mathscr{L}_n(\mathbf{Y} \mid \mathbf{Z})$ \bullet
- Test statistic T_n can be arbitrary
- (Previous work)

CRT properties under **MX** assumption ($\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ known)

Finite-sample Type-I error control

- No assumptions on $\mathscr{L}_n(\mathbf{Y} \mid \mathbf{Z})$
- Test statistic T_n can be arbitrary
- (Previous work)

CRT properties if $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ learned on $N \gg n \cdot \dim(\mathbf{Z})$ samples

- Asymptotic Type-I error control
- No assumptions on $\mathscr{L}_n(\mathbf{Y} \mid \mathbf{Z})$
- Test statistic T_n can be arbitrary

CRT properties under **MX** assumption ($\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ known)

- Finite-sample Type-I error control
- No assumptions on $\mathscr{L}_n(\mathbf{Y} \mid \mathbf{Z})$
- Test statistic T_n can be arbitrary

(Previous work)

CRT properties if $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ learned on $N \gg n \cdot \dim(\mathbf{Z})$ samples

- Asymptotic Type-I error control
- No assumptions on $\mathscr{L}_n(\mathbf{Y} \mid \mathbf{Z})$
- Test statistic T_n can be arbitrary

CRT properties under **MX** assumption ($\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ known)

- Finite-sample Type-I error control
- No assumptions on $\mathscr{L}_n(\mathbf{Y} \mid \mathbf{Z})$
- Test statistic T_n can be arbitrary

(Our work)

(Previous work)

CRT properties if $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ learned on $N \gg n \cdot \dim(\mathbf{Z})$ samples

- Asymptotic Type-I error control
- No assumptions on $\mathscr{L}_n(\mathbf{Y} \mid \mathbf{Z})$
- Test statistic T_n can be arbitrary

CRT properties under **MX** assumption ($\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ known)

- Finite-sample Type-I error control
- No assumptions on $\mathscr{L}_n(\mathbf{Y} \mid \mathbf{Z})$
- Test statistic T_n can be arbitrary

CRT properties if $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ learned in sample

- Asymptotic Type-I error control
- Type-I error control for only certain T_{n}

(Previous work)

(Our work)

• $\mathscr{L}_n(\mathbf{Y} \mid \mathbf{Z})$ cannot be too complex

CRT properties under **MX** assumption ($\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ known)

Theoretical (Previous work)

- Finite-sample Type-I error control
- No assumptions on $\mathscr{L}_{n}(\mathbf{Y} \mid \mathbf{Z})$
- Test statistic T_n can be arbitrary

CRT properties if $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ learned in sample

- Asymptotic Type-I error control
- Type-I error control for only certain T_{n}

(Our work)

• $\mathscr{L}_n(\mathbf{Y} \mid \mathbf{Z})$ cannot be too complex

CRT properties under **MX** assumption ($\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ known)

Theoretical (Previous work)

- Finite-sample Type-I error control
- No assumptions on $\mathscr{L}_{n}(\mathbf{Y} \mid \mathbf{Z})$
- Test statistic T_n can be arbitrary

CRT properties if $\mathscr{L}_n^*(\mathbf{X} \mid \mathbf{Z})$ learned in sample

- Asymptotic Type-I error control
- Type-I error control for only certain T_{n}

Practical (Our work)

 $\mathscr{L}_n(\mathbf{Y} \mid \mathbf{Z})$ cannot be too complex

When effective sample size is small, dCRT p-value has better calibration

- When effective sample size is small, dCRT p-value has better calibration

 $X \sim \text{Bern}(\text{expit}(-4 + Z)), Y \sim \text{Pois}(\exp(-3 + Z)), Z \sim N(0,1), n = 1000$

- - $X \sim \text{Bern}(\text{expit}(-4 + Z)), Y \sim \text{Pois}(\exp(-3 + Z)), Z \sim N(0,1), n = 1000$

When effective sample size is small, dCRT p-value has better calibration

When effective sample size is small, dCRT p-value has better calibration

$X \sim \text{Bern}(\text{expit}(-4 + Z)), Y \sim \text{Pois}(\exp(-3 + Z)), Z \sim N(0,1), n = 1000$

When effective sample size is small, dCRT p-value has better calibration

$X \sim \text{Bern}(\text{expit}(-4 + Z)), Y \sim \text{Pois}(\exp(-3 + Z)), Z \sim N(0,1), n = 1000$

Sparse X and Y, as is common in single-cell genomics

 $X \sim \text{Bern}(\text{expit}(-4 + Z)), Y \sim \text{Pois}(\exp(-3 + Z)), Z \sim N(0,1), n = 1000$ Sparse X and Y, as is common in single-cell genomics

When effective sample size is small, dCRT p-value has better calibration

 $X \sim \text{Bern}(\text{expit}(-4 + Z)), Y \sim \text{Pois}(\exp(-3 + Z)), Z \sim N(0,1), n = 1000$ Sparse X and Y, as is common in single-cell genomics

When effective sample size is small, dCRT p-value has better calibration

A computational challenge:

dCRT requires a large number of resamples to obtain accurate small p-values.

A statistical solution:

probability of the resampling distribution.

A computational challenge:

dCRT requires a large number of resamples to obtain accurate small p-values.

A statistical solution:

probability of the resampling distribution.

A computational challenge:

dCRT requires a large number of resamples to obtain accurate small p-values.

A statistical solution:

probability of the resampling distribution.

A computational challenge:

dCRT requires a large number of resamples to obtain accurate small p-values.

A statistical solution:

probability of the resampling distribution.

We extend saddlepoint approximation theory to approximate the conditional tail

spaCRT is completely resampling-free and almost as fast as GCM!

A computational challenge:

dCRT requires a large number of resamples to obtain accurate small p-values.

A statistical solution:

probability of the resampling distribution.

Discussion
Take-home message:

Take-home message:

• When $\mathscr{L}_n(\mathbf{X} \mid \mathbf{Z})$ fit in sample, MX inference is like doubly robust inference; Type-I error control possible, but both $\widehat{\mathscr{L}}_n(\mathbf{X} \mid \mathbf{Z})$ and $\widehat{\mathscr{L}}_n(\mathbf{Y} \mid \mathbf{Z})$ matter.

Take-home message:

- error control possible, but both $\widehat{\mathscr{L}}_n(\mathbf{X} \mid \mathbf{Z})$ and $\widehat{\mathscr{L}}_n(\mathbf{Y} \mid \mathbf{Z})$ matter.

• When $\mathscr{L}_n(X \mid Z)$ fit in sample, MX inference is like doubly robust inference; Type-I

Take-home message:

- error control possible, but both $\widehat{\mathscr{L}}_n(\mathbf{X} \mid \mathbf{Z})$ and $\widehat{\mathscr{L}}_n(\mathbf{Y} \mid \mathbf{Z})$ matter.
- dCRT is particularly useful under low effective sample size regime.

• When $\mathscr{L}_n(X \mid Z)$ fit in sample, MX inference is like doubly robust inference; Type-I

Take-home message:

- error control possible, but both $\widehat{\mathscr{L}}_n(\mathbf{X} \mid \mathbf{Z})$ and $\widehat{\mathscr{L}}_n(\mathbf{Y} \mid \mathbf{Z})$ matter.
- dCRT is particularly useful under low effective sample size regime.

Open questions:

• When $\mathscr{L}_n(X \mid Z)$ fit in sample, MX inference is like doubly robust inference; Type-I

Take-home message:

- error control possible, but both $\widehat{\mathscr{L}}_n(\mathbf{X} \mid \mathbf{Z})$ and $\widehat{\mathscr{L}}_n(\mathbf{Y} \mid \mathbf{Z})$ matter.
- dCRT is particularly useful under low effective sample size regime.

Open questions:

Extensions to other test statistics beyond dCRT

• When $\mathscr{L}_n(X \mid Z)$ fit in sample, MX inference is like doubly robust inference; Type-I

Take-home message:

- error control possible, but both $\widehat{\mathscr{L}}_n(\mathbf{X} \mid \mathbf{Z})$ and $\widehat{\mathscr{L}}_n(\mathbf{Y} \mid \mathbf{Z})$ matter.
- dCRT is particularly useful under low effective sample size regime.

Open questions:

- Extensions to other test statistics beyond dCRT
- Extensions to knockoffs

• When $\mathscr{L}_n(X \mid Z)$ fit in sample, MX inference is like doubly robust inference; Type-I

Take-home message:

- error control possible, but both $\widehat{\mathscr{L}}_n(\mathbf{X} \mid \mathbf{Z})$ and $\widehat{\mathscr{L}}_n(\mathbf{Y} \mid \mathbf{Z})$ matter.
- dCRT is particularly useful under low effective sample size regime.

Open questions:

- Extensions to other test statistics beyond dCRT
- Extensions to knockoffs
- Moving beyond the "consistency regime," e.g. to proportional asymptotics

• When $\mathscr{L}_n(X \mid Z)$ fit in sample, MX inference is like doubly robust inference; Type-I

Thank you! Questions?

Simple numerical simulation:

- $\mathscr{L}(\mathbf{Z}) \sim N(0,I); \ \mathscr{L}(\mathbf{X} \mid \mathbf{Z}) = N(\mathbf{Z}^T \beta, 1); \ \mathscr{L}(\mathbf{Y} \mid \mathbf{Z}) = N(\mathbf{Z}^T \beta, 1);$
- n = 1600, p = 400, β has 5 nonzero elements;
- $\mathscr{L}(\mathbf{X} \mid \mathbf{Z})$ estimated via the lasso of *X* on *Z*.

Simple numerical simulation:

- $\mathscr{L}(\mathbf{Z}) \sim N(0,I); \ \mathscr{L}(\mathbf{X} \mid \mathbf{Z}) = N(\mathbf{Z}^T \beta, 1); \ \mathscr{L}(\mathbf{Y} \mid \mathbf{Z}) = N(\mathbf{Z}^T \beta, 1);$
- n = 1600, p = 400, β has 5 nonzero elements;
- $\mathscr{L}(\mathbf{X} \mid \mathbf{Z})$ estimated via the lasso of X on Z.

Case 1: $\mathbb{E}[\mathbf{Y} \mid \mathbf{Z}]$ estimated poorly: $\hat{\mu}_{n,v}(\mathbf{Z}) \equiv 0$.

Simple numerical simulation:

- $\mathscr{L}(\mathbf{Z}) \sim N(0,I); \ \mathscr{L}(\mathbf{X} \mid \mathbf{Z}) = N(\mathbf{Z}^T \beta, 1); \ \mathscr{L}(\mathbf{Y} \mid \mathbf{Z}) = N(\mathbf{Z}^T \beta, 1);$
- n = 1600, p = 400, β has 5 nonzero elements;
- $\mathscr{L}(\mathbf{X} \mid \mathbf{Z})$ estimated via the lasso of X on Z.

Case 1: $\mathbb{E}[\mathbf{Y} \mid \mathbf{Z}]$ estimated poorly: $\hat{\mu}_{n.v}(\mathbf{Z}) \equiv 0$.

Simple numerical simulation:

- $\mathscr{L}(\mathbf{Z}) \sim N(0,I); \ \mathscr{L}(\mathbf{X} \mid \mathbf{Z}) = N(\mathbf{Z}^T \beta, 1); \ \mathscr{L}(\mathbf{Y} \mid \mathbf{Z}) = N(\mathbf{Z}^T \beta, 1);$
- n = 1600, p = 400, β has 5 nonzero elements;
- $\mathscr{L}(\mathbf{X} \mid \mathbf{Z})$ estimated via the lasso of X on Z.

Case 1: $\mathbb{E}[\mathbf{Y} \mid \mathbf{Z}]$ estimated poorly: $\hat{\mu}_{n,v}(\mathbf{Z}) \equiv 0$.

Case 2: $\mathbb{E}[Y \mid Z]$ estimated decently: $\widehat{\mu}_{n,v}(\mathbf{Z})$ obtained via lasso of *Y* on *Z*.

Simple numerical simulation:

- $\mathscr{L}(\mathbf{Z}) \sim N(0,I); \ \mathscr{L}(\mathbf{X} \mid \mathbf{Z}) = N(\mathbf{Z}^T \beta, 1); \ \mathscr{L}(\mathbf{Y} \mid \mathbf{Z}) = N(\mathbf{Z}^T \beta, 1);$
- n = 1600, p = 400, β has 5 nonzero elements;
- $\mathscr{L}(\mathbf{X} \mid \mathbf{Z})$ estimated via the lasso of X on Z.

Case 1: $\mathbb{E}[\mathbf{Y} \mid \mathbf{Z}]$ estimated poorly: $\hat{\mu}_{n,v}(\mathbf{Z}) \equiv 0$.

Case 2: $\mathbb{E}[Y \mid Z]$ estimated decently: $\widehat{\mu}_{n,v}(\mathbf{Z})$ obtained via lasso of *Y* on *Z*.

Estimate of E[YIZ] — Intercept-only ---- LASSO

Simple numerical simulation:

- $\mathscr{L}(\mathbf{Z}) \sim N(0,I); \ \mathscr{L}(\mathbf{X} \mid \mathbf{Z}) = N(\mathbf{Z}^T \beta, 1); \ \mathscr{L}(\mathbf{Y} \mid \mathbf{Z}) = N(\mathbf{Z}^T \beta, 1);$
- n = 1600, p = 400, β has 5 nonzero elements;
- $\mathscr{L}(\mathbf{X} \mid \mathbf{Z})$ estimated via the lasso of X on Z.

Case 1: $\mathbb{E}[\mathbf{Y} \mid \mathbf{Z}]$ estimated poorly: $\hat{\mu}_{n,v}(\mathbf{Z}) \equiv 0$.

Case 2: $\mathbb{E}[Y \mid Z]$ estimated decently: $\widehat{\mu}_{n,v}(\mathbf{Z})$ obtained via lasso of *Y* on *Z*.

No hope for good inference with poor estimate for $\mathbb{E}[Y \mid Z]$.

Estimate of E[YIZ] — Intercept-only ---- LASSO

Simple numerical simulation:

- $\mathscr{L}(\mathbf{Z}) \sim N(0,I); \ \mathscr{L}(\mathbf{X} \mid \mathbf{Z}) = N(\mathbf{Z}^T \beta, 1); \ \mathscr{L}(\mathbf{Y} \mid \mathbf{Z}) = N(\mathbf{Z}^T \beta, 1);$
- n = 1600, p = 400, β has 5 nonzero elements;
- $\mathscr{L}(\mathbf{X} \mid \mathbf{Z})$ estimated via the lasso of X on Z.

Case 1: $\mathbb{E}[\mathbf{Y} \mid \mathbf{Z}]$ estimated poorly: $\hat{\mu}_{n,y}(\mathbf{Z}) \equiv 0$.

Case 2: $\mathbb{E}[\mathbf{Y} \mid \mathbf{Z}]$ estimated decently: $\hat{\mu}_{n,y}(\mathbf{Z})$ obtained via lasso of *Y* on *Z*.

No hope for good inference with poor estimate for $\mathbb{E}[Y \mid Z]$.

improves robustness of dCRT.

Corollary (Niu et al '24; informal). Assume

2. The estimated variances are consistent in the following sense:

$$\frac{1}{n} \sum_{i=1}^{n} (\operatorname{Var}_{\widehat{\mathscr{L}}_{n}}[X_{i} \mid Z_{i}] - V_{i})$$

1. $\text{RMSE}(\hat{\mu}_{n,x}) = o_P(1), \text{RMSE}(\hat{\mu}_{n,y}) = o_P(1), \text{RMSE}(\hat{\mu}_{n,x}) \cdot \text{RMSE}(\hat{\mu}_{n,y}) = o_P(n^{-1/2}).$

 $\operatorname{Var}_{\mathscr{L}_{p}}[X_{i} \mid Z_{i}])\operatorname{Var}_{\mathscr{L}_{p}}[Y_{i} \mid Z_{i}] \xrightarrow{p} 0.$

Corollary (Niu et al '24; informal). Assume

2. The estimated variances are consistent in the following sense:

$$\frac{1}{n}\sum_{i=1}^{n} (\operatorname{Var}_{\widehat{\mathscr{L}}_{n}}[X_{i} \mid Z_{i}] - \operatorname{Var}_{\mathscr{L}_{n}}[X_{i} \mid Z_{i}]) \operatorname{Var}_{\mathscr{L}_{n}}[Y_{i} \mid Z_{i}] \xrightarrow{p} 0.$$

the GCM test, i.e.

lim $\mathbb{P}_{\mathscr{L}_n}[\text{GCM test and dCRT coincide}] = 1.$ $n \rightarrow \infty$

1. $\text{RMSE}(\hat{\mu}_{n,x}) = o_P(1), \text{RMSE}(\hat{\mu}_{n,y}) = o_P(1), \text{RMSE}(\hat{\mu}_{n,x}) \cdot \text{RMSE}(\hat{\mu}_{n,y}) = o_P(n^{-1/2}).$

Then, for any sequence \mathscr{L}_n of local alternatives, the dCRT is asymptotically equivalent to

Corollary (Niu et al '24; informal). Assume

2. The estimated variances are consistent in the following sense:

$$\frac{1}{n}\sum_{i=1}^{n} (\operatorname{Var}_{\widehat{\mathscr{L}}_{n}}[X_{i} \mid Z_{i}] - \operatorname{Var}_{\mathscr{L}_{n}}[X_{i} \mid Z_{i}]) \operatorname{Var}_{\mathscr{L}_{n}}[Y_{i} \mid Z_{i}] \xrightarrow{p} 0.$$

the GCM test, i.e.

lim $\mathbb{P}_{\mathscr{L}_n}[\text{GCM test and dCRT coincide}] = 1.$ $n \rightarrow \infty$

1. $\text{RMSE}(\hat{\mu}_{n,x}) = o_P(1), \text{RMSE}(\hat{\mu}_{n,y}) = o_P(1), \text{RMSE}(\hat{\mu}_{n,x}) \cdot \text{RMSE}(\hat{\mu}_{n,y}) = o_P(n^{-1/2}).$

Then, for any sequence \mathscr{L}_n of local alternatives, the dCRT is asymptotically equivalent to

In large samples, GCM is preferable to dCRT because it avoids resampling.

Corollary (Niu et al '24; informal). Assume

2. The estimated variances are consistent in the following sense:

$$\frac{1}{n}\sum_{i=1}^{n} (\operatorname{Var}_{\widehat{\mathscr{L}}_{n}}[X_{i} \mid Z_{i}] - \operatorname{Var}_{\mathscr{L}_{n}}[X_{i} \mid Z_{i}])\operatorname{Var}_{\mathscr{L}_{n}}[Y_{i} \mid Z_{i}] \xrightarrow{p} 0.$$

the GCM test, i.e.

lim $\mathbb{P}_{\mathscr{L}_n}[\text{GCM test and dCRT coincide}] = 1.$ $n \rightarrow \infty$

- In small samples, dCRT may still be preferable to GCM.

1. $\text{RMSE}(\hat{\mu}_{n,x}) = o_P(1), \text{RMSE}(\hat{\mu}_{n,y}) = o_P(1), \text{RMSE}(\hat{\mu}_{n,x}) \cdot \text{RMSE}(\hat{\mu}_{n,y}) = o_P(n^{-1/2}).$

Then, for any sequence \mathscr{L}_n of local alternatives, the dCRT is asymptotically equivalent to

In large samples, GCM is preferable to dCRT because it avoids resampling.

Consider alternatives specified by the partially linear semiparametric model

 $\mathbf{Y} = \mathbf{X}\beta + g(\mathbf{Z}) + \epsilon; \quad \epsilon \sim N(0,\sigma^2).$

Consider alternatives specified by the partially linear semiparametric model

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + g(\mathbf{Z}) + \boldsymbol{\epsilon}; \quad \boldsymbol{\epsilon} \sim N(0, \sigma^2).$$

For this model, the oracle product-of-residuals test statistic

$$T_n^{\text{oracle}}(X, Y, Z) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \mu_{n,x}(Z_i))(Y_i - \mu_{n,y}(Z_i))$$

is efficient score statistic, with optimal asymptotic power against local alternatives.

Consider alternatives specified by the partially linear semiparametric model

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + g(\mathbf{Z}) + \boldsymbol{\epsilon}; \quad \boldsymbol{\epsilon} \sim N(0, \sigma^2).$$

For this model, the oracle product-of-residuals test statistic

$$T_n^{\text{oracle}}(X, Y, Z) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \mu_{n,x}(Z_i))(Y_i - \mu_{n,y}(Z_i))$$

is efficient score statistic, with optimal asymptotic power against local alternatives. Then, a test based on $T_n^{\text{oracle}}(X, Y, Z)$ is the most powerful test of

$$H_0^{\mathsf{SP}}: \beta = 0$$
 versus $H_1^{\mathsf{SP}}: \beta = h/\sqrt{n}.$

Consider alternatives specified by the partially linear semiparametric model

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + g(\mathbf{Z}) + \boldsymbol{\epsilon}; \quad \boldsymbol{\epsilon} \sim N(0, \sigma^2).$$

For this model, the oracle product-of-residuals test statistic

$$T_n^{\text{oracle}}(X, Y, Z) \equiv \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \mu_{n,x}(Z_i))(Y_i - \mu_{n,y}(Z_i))$$

is efficient score statistic, with optimal asymptotic power against local alternatives.

Then, a test based on $T_n^{\text{oracle}}(X, Y, Z)$ is the most powerful test of $H_0^{\mathsf{SP}}: \beta = 0$ vers

under Shah and Peters's conditions, so GCM is also most powerful.

sus
$$H_1^{\mathsf{SP}}: \beta = h/\sqrt{n}.$$

The GCM statistic $T_n(X, Y, Z)$ is asymptotically equivalent to $T_n^{\text{oracle}}(X, Y, Z)$

Testing the CI null $H_0^{CI} \cap \mathscr{R}_n$ is not the same as testing the semiparametric null

 H_0^{SP} : $\beta = 0$ in the model **Y**

=
$$\mathbf{X}\beta + g(\mathbf{Z}) + \epsilon$$
; $\epsilon \sim N(0,\sigma^2)$.

Testing the CI null $H_0^{CI} \cap \mathscr{R}_n$ is not the same as testing the semiparametric null

$$H_0^{\text{SP}}: \beta = 0$$
 in the model $\mathbf{Y} = \mathbf{X}\beta + g(\mathbf{Z}) + \epsilon; \quad \epsilon \sim N(0,\sigma^2).$

However, under certain conditions the SP null is nested inside the CI null.

Testing the CI null $H_0^{CI} \cap \mathscr{R}_n$ is not the same as testing the semiparametric null

$$H_0^{\text{SP}}: \beta = 0$$
 in the model $\mathbf{Y} = \mathbf{X}\beta + g(\mathbf{Z}) + \epsilon; \quad \epsilon \sim N(0,\sigma^2).$

However, under certain conditions the SP null is nested inside the CI null.

Testing the CI null $H_0^{CI} \cap \mathscr{R}_n$ is not the same as testing the semiparametric null

$$H_0^{\mathsf{SP}}: \beta = 0$$
 in the model $\mathbf{Y} = \mathbf{X}\beta + g(\mathbf{Z}) + \epsilon; \quad \epsilon \sim N(0,\sigma^2).$

However, under certain conditions the SP null is nested inside the CI null.

Testing the CI null $H_0^{CI} \cap \mathscr{R}_n$ is not the same as testing the semiparametric null

$$H_0^{\mathsf{SP}}: \beta = 0$$
 in the model $\mathbf{Y} = \mathbf{X}\beta + g(\mathbf{Z}) + \epsilon; \quad \epsilon \sim N(0,\sigma^2).$

However, under certain conditions the SP null is nested inside the CI null.

Therefore, any test controlling Type-I error on $H_0^{\mathsf{CI}} \cap \mathscr{R}_n$ must also control Type-I error on H_0^{SP} , and so its power is bounded above by that of the GCM test.

Testing the CI null $H_0^{CI} \cap \mathscr{R}_n$ is not the same as testing the semiparametric null

$$H_0^{\mathsf{SP}}: \beta = 0$$
 in the model $\mathbf{Y} = \mathbf{X}\beta + g(\mathbf{Z}) + \epsilon; \quad \epsilon \sim N(0,\sigma^2).$

However, under certain conditions the SP null is nested inside the CI null.

Therefore, any test controlling Type-I error on $H_0^{\mathsf{CI}} \cap \mathscr{R}_n$ must also control Type-I error on H_0^{SP} , and so its power is bounded above by that of the GCM test.

Theorem (Niu et al '24; informal). Under Shah and Peters's conditions, the GCM test of $H_0^{\mathsf{CI}} \cap \mathscr{R}_n$ is asymptotically most powerful against $H_1^{\mathsf{SP}} : \mathbf{Y} = \mathbf{X}h/\sqrt{n} + g(\mathbf{Z}) + \epsilon$.

For alternatives without interactions or heteroskedasticity:

For alternatives without interactions or heteroskedasticity:

• GCM is already the asymptotically most powerful test against local partially linear alternatives, so no use trying CRT with fancier test statistics.

For alternatives without interactions or heteroskedasticity:

- Similar statement is true for generalized partially linear models.

• GCM is already the asymptotically most powerful test against local partially linear alternatives, so no use trying CRT with fancier test statistics.

For alternatives without interactions or heteroskedasticity:

- GCM is already the asymptotically most powerful test against local partially linear alternatives, so no use trying CRT with fancier test statistics.
- Similar statement is true for generalized partially linear models.
- GCM is most powerful against local (generalized) linear model alternatives.

For alternatives without interactions or heteroskedasticity:

- GCM is already the asymptotically most powerful test against local partially linear alternatives, so no use trying CRT with fancier test statistics.
- Similar statement is true for generalized partially linear models.
- GCM is most powerful against local (generalized) linear model alternatives.

For alternatives with interactions or heteroskedasticity:

For alternatives without interactions or heteroskedasticity:

- GCM is already the asymptotically most powerful test against local partially linear alternatives, so no use trying CRT with fancier test statistics.
- Similar statement is true for generalized partially linear models.
- GCM is most powerful against local (generalized) linear model alternatives.

For alternatives with interactions or heteroskedasticity:

• We would not expect GCM (or dCRT) to be optimal, and alternative methods may have better power.¹

¹Scheidegger et al '21, Zhong et al '21, Lundborg et al. '22

Numerical simulations: Design

Numerical simulations: Design

Data-generating model:

Numerical simulations: Design

Data-generating model:

$\mathscr{L}(\mathbf{Z}) = N(0, \Sigma(\rho)), \ \mathscr{L}(\mathbf{X} \mid \mathbf{Z}) = N(\mathbf{Z}^T \beta, 1), \ \mathscr{L}(\mathbf{Y} \mid \mathbf{X}, \mathbf{Z}) = N(\mathbf{X}\theta + \mathbf{Z}^T \beta, 1),$

Parameters ν and θ control degree of confounding and signal strength.

Parameters ν and θ control degree of confounding and signal strength.

Methods compared:

Parameters ν and θ control degree of confounding and signal strength.

Methods compared:

dCRT and GCM (with lasso and post-lasso)

Parameters ν and θ control degree of confounding and signal strength.

Methods compared:

- dCRT and GCM (with lasso and post-lasso)
- Maxway CRT (implemented with data splitting)

n = 200; p = 400; ρ = 0.4

s = 20 s = 5

Marginal association between X and Y (v)

- dCRT (LASSO) GCM (LASSO) Maxway CRT
- dCRT (PLASSO) - GCM (PLASSO)

s = 80

n = 200; p = 400; ρ = 0.4

n = 200; p = 400; ρ = 0.4

n = 200; p = 400; ρ = 0.4

Takeaways

GCM and dCRT perform similarly, \bullet consistent with asymptotic theory.

n = 200; p = 400; ρ = 0.4

- GCM and dCRT perform similarly, ulletconsistent with asymptotic theory.
- Lasso-based methods can have very \bullet inflated Type-I error in difficult settings.

n = 200; p = 400; ρ = 0.4

- Lasso-based methods can have very \bullet inflated Type-I error in difficult settings.
- Maxway performs better than lassolacksquarebased dCRT and GCM, consistent with results of Li and Liu '22.

 $n = 200; p = 400; \rho = 0.4$

- Lasso-based methods can have very inflated Type-I error in difficult settings.
- Maxway performs better than lassolacksquarebased dCRT and GCM, consistent with results of Li and Liu '22.
- Post-lasso-based dCRT and GCM typically outperform Maxway CRT.

 $n = 200; p = 400; \rho = 0.4$

- Lasso-based methods can have very inflated Type-I error in difficult settings.
- Maxway performs better than lassolacksquarebased dCRT and GCM, consistent with results of Li and Liu '22.
- Post-lasso-based dCRT and GCM typically outperform Maxway CRT.
- Best-performing post-lasso methods lacksquarebreak down as problem becomes too difficult, i.e. S & P's conditions violated.

 $n = 200; p = 400; \rho = 0.4$

Takeaways

ullet

Lasso-based methods can have very inflated Type-I error in difficult settings.

GCM and dCRT perform similarly,

consistent with asymptotic theory.

- Maxway performs better than lassolacksquarebased dCRT and GCM, consistent with results of Li and Liu '22.
- Post-lasso-based dCRT and GCM typically outperform Maxway CRT.
- Best-performing post-lasso methods lacksquarebreak down as problem becomes too difficult, i.e. S & P's conditions violated.

Remark

We expect, for smaller samples sizes or lacksquaremore discrete data, that dCRT can have better Type-I error control than GCM.

n = 200; p = 400; ρ = 0.4

dCRT (PLASSO) - - GCM (PLASSO) - -

= 80

n = 200; p = 400; ρ = 0.4

dCRT (PLASSO) - - GCM (PLASSO) - -

Note: All methods subjected to "oracle calibration" for fair power comparison.

= 80

n = 200; p = 400; ρ = 0.4

GCM (LASSO) dCRT (LASSO) ____

dCRT (PLASSO) - -GCM (PLASSO)

Note: All methods subjected to "oracle

calibration" for fair power comparison.

Maxway CRT

30

n = 200; p = 400; ρ = 0.4

GCM (LASSO) dCRT (LASSO) _____

dCRT (PLASSO) - -GCM (PLASSO)

Note: All methods subjected to "oracle calibration" for fair power comparison.

Takeaways

Maxway CRT

n = 200; p = 400; ρ = 0.4

- dCRT (LASSO) - GCM (LASSO) - Maxv

- - dCRT (PLASSO) - - GCM (PLASSO)

Note: All methods subjected to "oracle calibration" for fair power comparison.

Takeaways

• GCM tends to outperform dCRT.

Maxway CRT

n = 200; p = 400; ρ = 0.4

- dCRT (LASSO) - GCM (LASSO) - Maxv

- - dCRT (PLASSO) - - GCM (PLASSO)

Note: All methods subjected to "oracle calibration" for fair power comparison.

Takeaways

- GCM tends to outperform dCRT.
- Lasso outperforms post-lasso, suggesting bias-variance trade-off.

Maxway CRT

n = 200; p = 400; ρ = 0.4

- dCRT (LASSO) - GCM (LASSO) - Maxv

- - dCRT (PLASSO) - - GCM (PLASSO)

Maxway CRT

Note: All methods subjected to "oracle calibration" for fair power comparison.

- GCM tends to outperform dCRT.
- Lasso outperforms post-lasso, suggesting bias-variance trade-off.
- Maxway CRT has lowest power, due to data splitting. Better performance in separate semi-supervised simulation.