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Intractable Generative Models

• Likelihood function is intractable.

• Sampling is possible.

• ui ∼ U([0, 1]s),Gθ(ui) ∼ Pθ .

• Examples include VAE, GANs.



MinimumDistance Estimators (MDE)

• {yj}m
j=1

IID∼ Q ∈ P(X ).

• one can construct an estimator through the framework of MDE:

θ̂D
m = argmin

θ∈Θ
D(Pθ,Qm)

whereQm = 1
m

∑m
j=1 δyj(x).

• Pθ is unknown. Require a good approximation D(Pn
θ,Qm).



Integral Probability Metrics (IPMs)

• An IPM is a probability metric which takes the form:

DF (P,Q) := sup
f∈F

∣∣∣∣
∫

X
f(x)P(dx)−

∫

X
f(x)Q(dx)

∣∣∣∣

• Popular metrics include:

– Maximum Mean Discrepancy (MMD)

– Wasserstein Distance

• Other popular divergences (not in IPMs) include:

– Sinkhorn divergence Sc,p,λ

– Sliced Wasserstein Distance.



Sample Complexity

Consider D is a metric.

• We want D(Pθ,Qm) but what we can get is D(Pn
θ,Qm).

• We could like make |D(Pn
θ,Qm)− D(Pθ,Q)| to be as small as possible.

• By basic concentration inequality, we know

|D(Pn
θ,Qm)− D(Pθ,Qm)| ≤ D(Pn

θ,Pθ)

Sample complexity D(Pn
θ,Pθ) plays a key role here!

• Issue with Previous Method: Monte Carlo point set only guarantees
D(Pn

θ,Pθ) = Op(n−1/2).



Enhancing Sample Complexity via Quasi-Monte Carlo

• QMC: generate a more ”diverse” set of samples from the model.

• IDEA: Replace MC points to estimate discrepancies with QMC/RQMC points.



Numerical Results: Inference for Multivariate
g-and-k Models

The generator for g-and-k model is

Gθ(u) := θ1 + θ2

(
1 + 0.8

(1− exp(−θ3z))
(1 + exp(−θ3z))

)
(1 + z2)θ4z

where z = Σ
1
2Φ−1(u)#, u ∼ Unif([0, 1]d). Σ is a symmetric Toepliz matrix with

diagonal entries equal to 1 and subdiagonals equal to θ5 andΦ−1 is the inverse CDF
of Gaussian.



More Applications: generative neural network

• Generative models widely used in modern machine learning are parametrized by
neural network.

• Consider Gθ : U → X with U = [0, 1]2 andX = [0, 1]784 (i.e. s = 2 and d = 784)
of the form:

Gθ(u) = φ2(φ1(φ1(u
#W1 + b1)#W2 + b2)#W3 + b3)

where θ is a parameter vector containing all entries of the weight matrices and

– φ1(x) = log( exp(x) + 1) (a softplus activation function)

– φ2(x) = (1 + exp(−x))−1 (a logistic activation function)



More Applications: generative neural network



Theory: Assumptions

Assumption 1(QMC points set)
Given a model Pθ with generative process (Unif([0, 1]s), Gθ), we assume we have access to

xi = Gθ(ui) for i = 1, . . . , n where {ui}n
i=1 ⊂ [0, 1]s form a QMC or RQMC point set for some

αs > 0. Furthermore, we write Pn
θ = 1

n

∑n
i=1 δxi .

Assumption 2(Smoothness condition)
Assume that the domainX ⊂ Rd is a compact space and that the generator is a map
Gθ : [0, 1]s → X where:

1. ∂(1,...,1)(Gθ)j ∈ C([0, 1]s) for all j = 1, . . . , d.

2. ∂v(Gθ)j(· : 1−v) ∈ Lpj([0, 1]|v|) for all j = 1, . . . , d and v ∈ {0, 1}s \ (0, . . . , 0), where
pj ∈ [1,∞] and

∑d
j=1 p−1

j ≤ 1.



Theory: Results

Theorem
Let k ∈ Cs,s(X ), Pθ ∈ Pk and suppose Assumptions 1-2 hold. Then,

MMD(Pθ,Pn
θ) = O(n−1(log n)αs).

Corollary
Suppose the conditions in above Theorem hold. Then,

|MMD(Pθ,Qm)−MMD(Pn
θ,Qm)| = O(n−1(log n)αs).
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