Assumption-lean weak limits and tests for two-stage adaptive experiments

International Seminar on Selective Inference June 3, 2025

Ziang Niu **University of Pennsylvania** https://ziangniu6.github.io

Co-author

Zhimei Ren

Motivating example: new treatment development for lowering CVD risk.

Motivating example: new treatment development for lowering CVD risk.

Motivating example: new treatment development for lowering CVD risk.

Control : Treatment:

Motivating example: new treatment development for lowering CVD risk.

Motivating example: new treatment development for lowering CVD risk.

Control : Treatment:

Motivating example: new treatment development for lowering CVD risk.

Control:

Treatment:

Motivating example: new treatment development for lowering CVD risk.

Control:

Treatment:

Motivating example: new treatment development for lowering CVD risk.

Control:

Treatment:

Motivating example: new treatment development for lowering CVD risk.

Control:

Treatment:

Motivating example: new treatment development for lowering CVD risk.

Control:

Treatment:

Ethical consideration: reduce the risk of subjects exposing to inferior treatment.

1: Ambrosius et al. (2014)

Motivating example: new treatment development for lowering CVD risk.

Control:

Treatment:

Ethical consideration: reduce the risk of subjects exposing to inferior treatment.

1: Ambrosius et al. (2014)

Motivating example: new treatment development for lowering CVD risk.

Control:

Treatment:

Ethical consideration: reduce the risk of subjects exposing to inferior treatment.

1: Ambrosius et al. (2014)

Motivating example: new treatment development for lowering CVD risk.

Control:

Treatment:

Motivating example: new treatment development for lowering CVD risk.

Control:

Treatment:

Motivating example: new treatment development for lowering CVD risk.

Control:

Treatment:

experiment.

Response adaptive experiments: drop-the-loser experiment; batched bandit

experiment.

Control :

Treatment:

Response adaptive experiments: drop-the-loser experiment; batched bandit

Adaptive sampling: adjust sampling by DIM $\equiv \widehat{\mathbb{E}} [CVD([])] - \widehat{\mathbb{E}} [CVD([])]$.

experiment.

Adaptive algorithms: $\mathbb{P}[\ | \text{Pilot}] = f(\text{DIM})$.

Control :

Treatment:

Response adaptive experiments: drop-the-loser experiment; batched bandit

Adaptive sampling: adjust sampling by DIM $\equiv \widehat{\mathbb{E}} [CVD([])] - \widehat{\mathbb{E}} [CVD([])]$.

experiment.

Adaptive algorithms: $\mathbb{P}[\ | \text{Pilot}] = f(\text{DIM})$.

• Greedy algorithm:

Control :

Treatment:

Response adaptive experiments: drop-the-loser experiment; batched bandit

Adaptive sampling: adjust sampling by DIM $\equiv \widehat{\mathbb{E}} [CVD([])] - \widehat{\mathbb{E}} [CVD([])]$.

Response adaptive experiments: drop-the-loser experiment; batched bandit experiment.

Adaptive sampling: adjust sampling by DIM $\equiv \widehat{\mathbb{E}} [CVD([])] - \widehat{\mathbb{E}} [CVD([])]$.

Adaptive algorithms: $\mathbb{P}[\ | \text{Pilot}] = f(\text{DIM})$.

• Greedy algorithm:

 $\mathbb{P}[\ |\ \mathsf{Pilot}] = \begin{cases} 0.9 \text{ if } \mathsf{DIM} > 0\\ 0.1 \text{ if } \mathsf{DIM} \le 0 \end{cases}$

Control :

Treatment:

$y \text{ DIM} \equiv \widehat{\mathbb{E}} [CVD([])] - \widehat{\mathbb{E}} [CVD(\bigcirc)].$ [M].

Response adaptive experiments: drop-the-loser experiment; batched bandit experiment.

Adaptive sampling: adjust sampling by DIM $\equiv \widehat{\mathbb{E}} [CVD([])] - \widehat{\mathbb{E}} [CVD([])]$.

Adaptive algorithms: $\mathbb{P}[\ | \text{Pilot}] = f(\text{DIM})$.

• Greedy algorithm:

 $\mathbb{P}[\ |\ \mathsf{Pilot}] = \begin{cases} 0.9 \text{ if } \mathsf{DIM} > 0\\ 0.1 \text{ if } \mathsf{DIM} \le 0 \end{cases}$

• (Modified) Thompson sampling:

Control :

Treatment:

$y \text{ DIM} \equiv \widehat{\mathbb{E}} [CVD([])] - \widehat{\mathbb{E}} [CVD(\bigcirc)].$ [M].

Response adaptive experiments: drop-the-loser experiment; batched bandit experiment.

Adaptive sampling: adjust sampling by DIM $\equiv \widehat{\mathbb{E}} [CVD([])] - \widehat{\mathbb{E}} [CVD([])]$.

Adaptive algorithms: $\mathbb{P}[\ | \text{Pilot}] = f(\text{DIM})$.

• Greedy algorithm:

(Modified) Thompson sampling:

Control :

Treatment:

- $\mathbb{P}[\ |\ \mathsf{Pilot}] = \begin{cases} 0.9 \text{ if } \mathsf{DIM} > 0\\ 0.1 \text{ if } \mathsf{DIM} \le 0 \end{cases}$
 - $\mathbb{P}[|\mathsf{Pilot}] = \Phi(\mathsf{DIM}).$

Response adaptive experiments: drop-the-loser experiment; batched bandit experiment.

Adaptive sampling: adjust sampling by DIM $\equiv \widehat{\mathbb{E}} [CVD([])] - \widehat{\mathbb{E}} [CVD([])]$.

Adaptive algorithms: $\mathbb{P}[\ | \text{Pilot}] = f(\text{DIM})$.

• Greedy algorithm:

- $\mathbb{P}[\ |\ \mathsf{Pilot}] = \begin{cases} 0.9 \text{ if } \mathsf{DIM} > 0\\ 0.1 \text{ if } \mathsf{DIM} \le 0 \end{cases}$
- (Modified) Thompson sampling:
 - $\mathbb{P}[|\mathsf{Pilot}] = \Phi(\mathsf{DIM}).$
- Interim *p*-value: define $T = \text{DIM}/\hat{\sigma}$ with $p_L = \Phi(T)$ and $p_R = 1 p_L$.

Response adaptive experiments: drop-the-loser experiment; batched bandit experiment.

Adaptive sampling: adjust sampling by DIM $\equiv \widehat{\mathbb{E}} [CVD([])] - \widehat{\mathbb{E}} [CVD([])]$.

Adaptive algorithms: $\mathbb{P}[\ | \text{Pilot}] = f(\text{DIM})$.

• Greedy algorithm:

- $\mathbb{P}[\ |\ \mathsf{Pilot}] = \begin{cases} 0.9 \text{ if } \mathsf{DIM} > 0\\ 0.1 \text{ if } \mathsf{DIM} \le 0 \end{cases}$
- (Modified) Thompson sampling:
 - $\mathbb{P}[|\mathsf{Pilot}] = \Phi(\mathsf{DIM}).$
- Interim *p*-value: define $T = \text{DIM}/\hat{\sigma}$ with $p_L = \Phi(T)$ and $p_R = 1 p_L$.

 $\mathbb{P}[|\mathbf{P}||\mathbf{Ot}] = 0.9 \text{ if } p_L \leq \alpha;$

Response adaptive experiments: drop-the-loser experiment; batched bandit experiment.

Adaptive sampling: adjust sampling by DIM $\equiv \widehat{\mathbb{E}} [CVD([])] - \widehat{\mathbb{E}} [CVD([])]$.

Adaptive algorithms: $\mathbb{P}[\ | \text{Pilot}] = f(\text{DIM})$.

• Greedy algorithm:

- $\mathbb{P}[\ |\ \mathsf{Pilot}] = \begin{cases} 0.9 \text{ if } \mathsf{DIM} > 0\\ 0.1 \text{ if } \mathsf{DIM} \le 0 \end{cases}$
- (Modified) Thompson sampling:
 - $\mathbb{P}[|\mathsf{Pilot}] = \Phi(\mathsf{DIM}).$
- Interim *p*-value: define $T = \text{DIM}/\hat{\sigma}$ with $p_L = \Phi(T)$ and $p_R = 1 p_L$.

 $\mathbb{P}[|\mathbf{P}|| | \mathbf{P}|| \mathbf{O}| \mathbf{I}] = 0.9 \text{ if } p_L \le \alpha; \quad 0.1 \text{ if } p_L \ge 1 - \alpha;$

Response adaptive experiments: drop-the-loser experiment; batched bandit experiment.

Adaptive sampling: adjust sampling by DIM $\equiv \widehat{\mathbb{E}} [CVD([])] - \widehat{\mathbb{E}} [CVD([])]$.

Adaptive algorithms: $\mathbb{P}[\ | \text{Pilot}] = f(\text{DIM})$.

• Greedy algorithm:

- $\mathbb{P}[\ |\ \mathsf{Pilot}] = \begin{cases} 0.9 \text{ if } \mathsf{DIM} > 0\\ 0.1 \text{ if } \mathsf{DIM} \le 0 \end{cases}$
- (Modified) Thompson sampling:
 - $\mathbb{P}[|\mathsf{Pilot}] = \Phi(\mathsf{DIM}).$
- Interim *p*-value: define $T = \text{DIM}/\hat{\sigma}$ with $p_L = \Phi(T)$ and $p_R = 1 p_L$.

Control :

 $\mathbb{P}[\ | \text{Pilot}] = 0.9 \text{ if } p_L \leq \alpha; \quad 0.1 \text{ if } p_L \geq 1 - \alpha; \quad 0.5 \text{ if } p_L \in (\alpha, 1 - \alpha).$

Response adaptive experiments: drop-the-loser experiment; batched bandit experiment.

Adaptive sampling: adjust sampling by

Adaptive algorithms: $\mathbb{P}[\ | \text{Pilot}] = f(DI)$

• Greedy algorithm:

- (Modified) Thompson sampling:
- Interim *p*-value: define $T = \text{DIM}/\hat{\sigma}$ with $p_L = \Phi(T)$ and $p_R = 1 p_L$.

 $\mathbb{P}[\ | \text{Pilot}] = 0.9 \text{ if } p_L \leq \alpha; \quad 0.1 \text{ if } p_L \geq 1 - \alpha; \quad 0.5 \text{ if } p_L \in (\alpha, 1 - \alpha).$

Control :

Treatment:

y DIM ≡
$$\widehat{\mathbb{E}}$$
 [CVD([)] – $\widehat{\mathbb{E}}$ [CVD([)].
IM).

 $\mathbb{P}[\ |\ \mathsf{Pilot}] = \begin{cases} 0.9 \text{ if } \mathsf{DIM} > 0\\ 0.1 \text{ if } \mathsf{DIM} \le 0 \end{cases}$

$\mathbb{P}[|\mathsf{Pilot}] = \Phi(\mathsf{DIM}).$

Decision-related questions:

Control:

Treatment:

Decision-related questions:

• Is the new treatment more effective? ($\mathbb{E}[\text{Diff}] \equiv \mathbb{E}[\text{CVD}(1) - \text{CVD}(0)] < 0$?)

Control :

Treatment:

Decision-related questions:

- Is the new treatment more effective? ($\mathbb{E}[Diff] \equiv \mathbb{E}[CVD([]) CVD([])] < 0$?)
- Is the treatment effect significant? ($\mathbb{E}[CVD(1)] < 0.03?$)

Control :

Treatment:

 $\mathbb{E}[CVD(1) - CVD(0)] < 0?)$ 0 < 0.03?)

Decision-related questions:

- Is the new treatment more effective? ($\mathbb{E}[Diff] \equiv \mathbb{E}[CVD([]) CVD([])] < 0$?)
- Is the treatment effect significant? ($\mathbb{E}[CVD(1)] < 0.03?$)
- Is the treatment more effective for particular subgroup? ($\mathbb{E}[\text{Diff}|_{\mathbf{n}}] > \mathbb{E}[\text{Diff}|_{\mathbf{n}}]$?)

5

Treatment:

Decision-related questions:

- Is the new treatment more effective? ($\mathbb{E}[Diff] \equiv \mathbb{E}[CVD(1) CVD(0)] < 0$?)
- Is the treatment effect significant? ($\mathbb{E}[CVD(1)] < 0.03?$)
- Is the treatment more effective for particular subgroup? ($\mathbb{E}[\text{Diff}|_{\mathbf{I}}] > \mathbb{E}[\text{Diff}|_{\mathbf{I}}]$?)

5

Data collection: treatment A, outcome Y.

Treatment:

Control:

Decision-related questions:

- Is the new treatment more effective? ($\mathbb{E}[Diff] \equiv \mathbb{E}[CVD(1) CVD(1)] < 0$?)
- Is the treatment effect significant? ($\mathbb{E}[CVD(1)] < 0.03?$)
- Is the treatment more effective for particular subgroup? ($\mathbb{E}[\text{Diff}|_{\mathbf{n}}] > \mathbb{E}[\text{Diff}|_{\mathbf{n}}]$?)

Control :

Treatment:

Data collection: treatment *A*, outcome *Y*. **Stage 1:** N_1 sample, $(A_1^{(1)}, Y_1^{(1)}), \dots, (A_{N_1}^{(1)}, Y_{N_1}^{(1)})$.

Decision-related questions:

- Is the new treatment more effective? ($\mathbb{E}[Diff] \equiv \mathbb{E}[CVD(1) CVD(0)] < 0$?)
- Is the treatment effect significant? ($\mathbb{E}[CVD(1)] < 0.03?$)
- Is the treatment more effective for particular subgroup? ($\mathbb{E}[\text{Diff}|_{\mathbf{n}}] > \mathbb{E}[\text{Diff}|_{\mathbf{n}}]$?)

Treatment:

Control:

Data collection: treatment *A*, outcome *Y*. **Stage 1:** N_1 sample, $(A_1^{(1)}, Y_1^{(1)}), \dots, (A_{N_1}^{(1)}, Y_{N_1}^{(1)})$. **Adaptive sampling:** greedy algorithm, Thompson sampling, interim *p*-value...

Decision-related questions:

- Is the new treatment more effective? ($\mathbb{E}[Diff] \equiv \mathbb{E}[CVD(1) CVD(0)] < 0$?)
- Is the treatment effect significant? ($\mathbb{E}[CVD([])] < 0.03?$)

Treatment:

Control:

• Is the treatment more effective for particular subgroup? ($\mathbb{E}[\text{Diff}|_{\mathbf{n}}] > \mathbb{E}[\text{Diff}|_{\mathbf{n}}]$?)

Data collection: treatment A, outcome Y. **Stage 1:** N_1 sample, $(A_1^{(1)}, Y_1^{(1)}), \dots, (A_{N_1}^{(1)}, Y_{N_1}^{(1)}).$ Adaptive sampling: greedy algorithm, Thompson sampling, interim *p*-value... **Stage 2:** N_2 sample, $(A_1^{(2)}, Y_1^{(2)}), \dots, (A_{N_2}^{(2)}, Y_{N_2}^{(2)}).$

Post-experiment eval

Decision-related questions:

- Is the new treatment more effective? ($\mathbb{E}[Diff] \equiv \mathbb{E}[CVD(1) CVD(0)] < 0$?)
- Is the treatment effect significant? ($\mathbb{E}[CVD(1)] < 0.03?$)

Challenge: pooled data $(A_u^{(t)}, Y_u^{(t)})_{u \in [N_t], t \in [2]}$ are highly dependent!

Data collection: treatment A, outcome Y. **Stage 1:** N_1 sample, $(A_1^{(1)}, Y_1^{(1)}), \dots, (A_{N_1}^{(1)}, Y_{N_1}^{(1)}).$ Adaptive sampling: greedy algorithm, Thompson sampling, interim *p*-value... **Stage 2:** N_2 sample, $(A_1^{(2)}, Y_1^{(2)}), \dots, (A_{N_2}^{(2)}, Y_{N_2}^{(2)}).$

• Is the treatment more effective for particular subgroup? ($\mathbb{E}[\text{Diff}|\mathbf{\hat{n}}] > \mathbb{E}[\text{Diff}|\mathbf{\hat{n}}]$?)

Control: Treatment:

5

Conditional inference: conditional on output of adaptive algorithm.

Conditional inference: conditional on output of adaptive algorithm.

• Data-splitting/data-carving: Chen and Andrews (2023).

Conditional inference: conditional on output of adaptive algorithm.

- Data-splitting/data-carving: Chen and Andrews (2023).
- Randomization inference: Freidling et al. (2024).

Conditional inference: conditional on output of adaptive algorithm.

- Data-splitting/data-carving: Chen and Andrews (2023).
- Randomization inference: Freidling et al. (2024).

Marginal inference: our interest.

Conditional inference: conditional on output of adaptive algorithm.

- Data-splitting/data-carving: Chen and Andrews (2023).
- Randomization inference: Freidling et al. (2024).

Marginal inference: our interest.

Randomization inference: Nair and Janson (2023).

Conditional inference: conditional on output of adaptive algorithm.

- Data-splitting/data-carving: Chen and Andrews (2023).
- Randomization inference: Freidling et al. (2024).

Marginal inference: our interest.

- Randomization inference: Nair and Janson (2023).
- Anytime-valid inference: Howard et al. (2021); Maharaj et al. (2023).

Conditional inference: conditional on output of adaptive algorithm.

- Data-splitting/data-carving: Chen and Andrews (2023).
- Randomization inference: Freidling et al. (2024).

Marginal inference: our interest.

- Randomization inference: Nair and Janson (2023).
- Anytime-valid inference: Howard et al. (2021); Maharaj et al. (2023).
- Adusumilli (2023).

Asymptotic-based inference: Zhang et al. (2020); Hadad et al. (2021); Hirano and Porter (2023);

Conditional inference: conditional on output of adaptive algorithm.

- Data-splitting/data-carving: Chen and Andrews (2023).
- Randomization inference: Freidling et al. (2024).

Marginal inference: our interest.

- Randomization inference: Nair and Janson (2023).
- Anytime-valid inference: Howard et al. (2021); Maharaj et al. (2023).
- Adusumilli (2023).

• Asymptotic-based inference: Zhang et al. (2020); Hadad et al. (2021); Hirano and Porter (2023);

Asymptotic inference frameworks

7

Asymptotic inference frameworks $H_0: \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] = 0 \quad \text{versus} \quad H_1: \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] \neq 0$

Asymptotic inference frameworks $H_0: \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] = 0 \quad \text{versus} \quad H_1: \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] \neq 0$ Non-normal sampling behavior

• Sample mean/OLS: Zhang et al. (2020, 2022).

Asymptotic inference frameworks $H_0: \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] = 0 \quad \text{versus} \quad H_1: \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] \neq 0$ Non-normal sampling behavior

- Sample mean/OLS: Zhang et al. (2020, 2022).
- IPW estimator: Hadad et al. (2021).

- Sample mean/OLS: Zhang et al. (2020, 2022).
- IPW estimator: Hadad et al. (2021).

- Sample mean/OLS: Zhang et al. (2020, 2022).
- IPW estimator: Hadad et al. (2021).

Asymptotic inference frameworks $H_0: \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] = 0$ versus $H_1: \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] \neq 0$ Efforts to recover normality Non-normal sampling behavior

- Sample mean/OLS: Zhang et al. (2020, 2022).
- IPW estimator: Hadad et al. (2021).

Asymptotic inference frameworks $H_0: \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] = 0$ versus $H_1: \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] \neq 0$ Efforts to recover normality Non-normal sampling behavior

- Sample mean/OLS: Zhang et al. (2020, 2022).
- IPW estimator: Hadad et al. (2021).

Zhang et al. (2020):

• Stage-wise normalized estimator.

- Sample mean/OLS: Zhang et al. (2020, 2022).
- IPW estimator: Hadad et al. (2021).

- Stage-wise normalized estimator.
- Power loss because of normalization. (Hirano and Porter, 2023)

Asymptotic inference frameworks $H_0: \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] = 0$ versus $H_1: \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] \neq 0$ Efforts to recover normality Non-normal sampling behavior

- Sample mean/OLS: Zhang et al. (2020, 2022).
- IPW estimator: Hadad et al. (2021).

- Stage-wise normalized estimator.
- Power loss because of normalization. (Hirano and Porter, 2023)

```
Hadad et al. (2021):
```

- Sample mean/OLS: Zhang et al. (2020, 2022).
- IPW estimator: Hadad et al. (2021).

Zhang et al. (2020):

- Stage-wise normalized estimator.
- Power loss because of normalization. (Hirano and Porter, 2023)

```
Hadad et al. (2021):
```

• Variance-stabilizing (A)IPW estimator.

- Sample mean/OLS: Zhang et al. (2020, 2022).
- IPW estimator: Hadad et al. (2021).

- Stage-wise normalized estimator.
- Power loss because of normalization. (Hirano and Porter, 2023)

```
Hadad et al. (2021):
```

- Variance-stabilizing (A)IPW estimator.
- Unknown asymptotic distribution under null.

- Sample mean/OLS: Zhang et al. (2020, 2022).
- IPW estimator: Hadad et al. (2021).

- Stage-wise normalized estimator.
- Power loss because of normalization. (Hirano and Porter, 2023)

```
Hadad et al. (2021):
```

- Variance-stabilizing (A)IPW estimator.
- Unknown asymptotic distribution under null.
- Type-I error inflation when misusing the normal for testing.

- Sample mean/OLS: Zhang et al. (2020, 2022).
- IPW estimator: Hadad et al. (2021).

- Stage-wise normalized estimator.
- Power loss because of normalization. (Hirano and Porter, 2023)

```
Hadad et al. (2021):
```

- Variance-stabilizing (A)IPW estimator.
- Unknown asymptotic distribution under null.
- Type-I error inflation when misusing the normal for testing.

Take one step back? $H_0: \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] = 0$ versus

Non-normal sampling behavior

- Sample mean/OLS: Zhang et al. (2020, 2022).
- IPW estimator: Hadad et al. (2021).

versus $H_1 : \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] \neq 0$ Efforts to recover normality

- Stage-wise normalized estimator.
- Power loss because of normalization. (Hirano and Porter, 2023)

```
Hadad et al. (2021):
```

- Variance-stabilizing (A)IPW estimator.
- Unknown asymptotic distribution under null.
- Type-I error inflation when misusing the normal for testing.

Take one step back? $H_0: \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] = 0$ versus $H_1: \mathbb{E}[Y_u(0)] - \mathbb{E}[Y_u(1)] \neq 0$ Efforts to recover normality Non-normal sampling behavior • Sample mean/OLS: Zhang et al. (2020, 2022). Zhang et al. (2020): • IPW estimator: Hadad et al. (2021). Stage-wise normalized estimator. Porter, 2023) Hadad et al. (2021): Can we explicitly characterize these non-normal weak limits? Variance-stabilizing (A)IPW estimator.

- Power loss because of normalization. (Hirano and

- Unknown asymptotic distribution under null.
- Type-I error inflation when misusing the normal for testing.

Our contributions

Our contributions

1. Theoretically: New assumption-lean weak limits of commonly used test statistics under minimal assumptions.

Our contributions

- 1. Theoretically: New assumption-lean weak limits of commonly used test statistics under minimal assumptions.
- 2. Methodologically: A fast bootstrap procedure for sampling from the limiting distribution and apply it for hypothesis testing.

A general class: weighted (A)IPW estimator

A general class: weighted (A)IPW estimator

Test statistics: suppose equal batch size $N_1 = N_2 = N/2$.
- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), \dots, (A_{N_t}^{(t)}, Y_{N_t}^{(t)})).$

$$\mathsf{AIPW}^{(t)}(s) \equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1} (A_u^{(t)} = s) (Y_u^{(t)} - \widehat{\mathbb{E}} (Y_u^{(t)})}{e_N^{(t)}(s)}$$

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), ..., (A_{N_t}^{(t)}, Y_{N_t}^{(t)})).$
 - $(\underline{Y}_{u}^{(t)})) + \widehat{\mathbb{E}}(Y_{u}^{(t)})$

$$\mathsf{AIPW}^{(t)}(s) \equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1} (A_u^{(t)} = s) (Y_u^{(t)} - \widehat{\mathbb{E}} (Y_u^{(t)})}{e_N^{(t)}(s)}$$

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), \dots, (A_{N_t}^{(t)}, Y_{N_t}^{(t)})).$
 - $\frac{Y^{(t)}_{u}}{2} + \widehat{\mathbb{E}}(Y^{(t)}_{u}) \qquad \text{AIPW}(s) \equiv \sum_{n=1}^{2} \frac{1}{2} \mathsf{AIPW}^{(t)}(s)$

$$\mathsf{AIPW}^{(t)}(s) \equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1} (A_u^{(t)} = s) (Y_u^{(t)} - \widehat{\mathbb{E}} (Y_u^{(t)})}{e_N^{(t)}(s)}$$

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), \dots, (A_{N_t}^{(t)}, Y_{N_t}^{(t)})).$
 - $\frac{\widehat{Y}(t)}{u}) + \widehat{\mathbb{E}}(Y_u^{(t)}) \quad \text{WAIPW}(s) \equiv \sum_{t=1}^2 \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^2 (e_N^{(t)}(s))^m} \mathsf{AIPW}^{(t)}(s)$

$$\mathsf{AIPW}^{(t)}(s) \equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1}(A_u^{(t)} = s)(Y_u^{(t)} - \widehat{\mathbb{E}}(Y_u^{(t)})}{e_N^{(t)}(s)}$$

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), \dots, (A_{N_t}^{(t)}, Y_{N_t}^{(t)})).$
 - $\frac{\widehat{Y}(t)}{u}) + \widehat{\mathbb{E}}(Y_u^{(t)}) \quad \text{WAIPW}(s) \equiv \sum_{t=1}^2 \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^2 (e_N^{(t)}(s))^m} \mathsf{AIPW}^{(t)}(s)$

$$\mathsf{AIPW}^{(t)}(s) \equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1}(A_u^{(t)} = s)(Y_u^{(t)} - \widehat{\mathbb{E}}(Y_u^{(t)})}{e_N^{(t)}(s)}$$

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), \dots, (A_{N_t}^{(t)}, Y_{N_t}^{(t)})).$
 - $\frac{Y^{(t)}_{u}(t)}{W} + \widehat{\mathbb{E}}(Y^{(t)}_{u}) \quad \text{WAIPW}(s) \equiv \sum_{t=1}^{2} \frac{(e_{N}^{(t)}(s))^{m}}{\sum_{t=1}^{2} (e_{N}^{(t)}(s))^{m}} \text{AIPW}^{(t)}(s)$

Test statistics: suppose equal batch size $N_1 = N_2 = N/2$.

$$\mathsf{AIPW}^{(t)}(s) \equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1} (A_u^{(t)} = s) (Y_u^{(t)} - \widehat{\mathbb{E}} (Y_u$$

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), \dots, (A_{N_t}^{(t)}, Y_{N_t}^{(t)})).$

Test statistics: suppose equal batch size $N_1 = N_2 = N/2$.

$$\mathsf{AIPW}^{(t)}(s) \equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1}(A_u^{(t)} = s)(Y_u^{(t)} - \widehat{\mathbb{E}}(Y_u^{(t)})}{e_N^{(t)}(s)}$$

Special cases:

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), \dots, (A_{N_t}^{(t)}, Y_{N_t}^{(t)})).$

Test statistics: suppose equal batch size $N_1 = N_2 = N/2$.

AIPW^(t)(s)
$$\equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1}(A_u^{(t)} = s)(Y_u^{(t)} - \widehat{\mathbb{E}}(Y_u^{(t)}))}{e_N^{(t)}(s)}$$

Special cases:

• m = 0: familiar AIPW estimator.

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), ..., (A_N^{(t)}, Y_N^{(t)})).$

Test statistics: suppose equal batch size $N_1 = N_2 = N/2$.

$$AIPW^{(t)}(s) \equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1}(A_u^{(t)} = s)(Y_u^{(t)} - \widehat{\mathbb{E}}(Y_u^{(t)})}{e_N^{(t)}(s)}$$

Special cases:

- m = 0: familiar AIPW estimator.
- m = 1/2: variance-stabilizing estimator.

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), ..., (A_N^{(t)}, Y_N^{(t)})).$

Test statistics: suppose equal batch size $N_1 = N_2 = N/2$.

$$AIPW^{(t)}(s) \equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1}(A_u^{(t)} = s)(Y_u^{(t)} - \widehat{\mathbb{E}}(Y_u^{(t)} - \widehat{\mathbb{E}}(Y_$$

Special cases:

- m = 0: familiar AIPW estimator.
- m = 1/2: variance-stabilizing estimator.
- m = 1: (asymptotically) equivalent to sample mean.

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), ..., (A_N^{(t)}, Y_N^{(t)})).$

Test statistics: suppose equal batch size $N_1 = N_2 = N/2$.

$$\mathsf{AIPW}^{(t)}(s) \equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1}(A_u^{(t)} = s)(Y_u^{(t)} - \widehat{\mathbb{E}}(Y_u^{(t)})}{e_N^{(t)}(s)}$$

Special cases:

- m = 0: familiar AIPW estimator.
- m = 1/2: variance-stabilizing estimator.
- m = 1: (asymptotically) equivalent to sample mean.

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), ..., (A_N^{(t)}, Y_N^{(t)})).$
 - $\frac{Y^{(t)}(t)}{u} + \widehat{\mathbb{E}}(Y^{(t)}_u) \quad \text{WAIPW}(s) \equiv \sum_{t=1}^2 \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^2 (e_N^{(t)}(s))^m} \mathsf{AIPW}^{(t)}(s)$

Test statistics: suppose equal batch size $N_1 = N_2 = N/2$.

$$\mathsf{AIPW}^{(t)}(s) \equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1}(A_u^{(t)} = s)(Y_u^{(t)} - \widehat{\mathbb{E}}(Y_u^{(t)})}{e_N^{(t)}(s)}$$

Special cases:

- m = 0: familiar AIPW estimator.
- m = 1/2: variance-stabilizing estimator.
- m = 1: (asymptotically) equivalent to sample mean.

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), ..., (A_N^{(t)}, Y_N^{(t)})).$
 - $\frac{Y^{(t)}(t)}{u} + \widehat{\mathbb{E}}(Y^{(t)}_u) \quad \text{WAIPW}(s) \equiv \sum_{t=1}^2 \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^2 (e_N^{(t)}(s))^m} \mathsf{AIPW}^{(t)}(s)$

Our focus:

Test statistics: suppose equal batch size $N_1 = N_2 = N/2$.

$$\mathsf{AIPW}^{(t)}(s) \equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1}(A_u^{(t)} = s)(Y_u^{(t)} - \widehat{\mathbb{E}}(Y_u^{(t)})}{e_N^{(t)}(s)}$$

Special cases:

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), ..., (A_N^{(t)}, Y_N^{(t)})).$
 - $\frac{Y^{(t)}(t)}{u} + \widehat{\mathbb{E}}(Y^{(t)}_u) \quad \text{WAIPW}(s) \equiv \sum_{t=1}^2 \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^2 (e_N^{(t)}(s))^m} \mathsf{AIPW}^{(t)}(s)$

Our focus:

Test statistics: suppose equal batch size $N_1 = N_2 = N/2$.

$$\mathsf{IPW}^{(t)}(s) \equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1}(A_u^{(t)} = s) Y_u^{(t)}}{e_N^{(t)}(s)}$$

Special cases:

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), \dots, (A_{N_t}^{(t)}, Y_{N_t}^{(t)})).$

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IPW}^{(t)}(s)$$

Our focus:

Weighted IPW (WIPW) estimator, $\widehat{\mathbb{E}}(Y_u^{(t)}) = 0$

Test statistics: suppose equal batch size $N_1 = N_2 = N/2$.

$$\mathsf{IPW}^{(t)}(s) \equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1}(A_u^{(t)} = s) Y_u^{(t)}}{e_N^{(t)}(s)}$$

Special cases:

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), \dots, (A_{N_t}^{(t)}, Y_{N_t}^{(t)})).$

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IPW}^{(t)}(s)$$

Our focus:

Weighted IPW (WIPW) estimator, $\widehat{\mathbb{E}}(Y_{\mu}^{(t)}) = 0$ $m \in \{0, 1/2\}$

Test statistics: suppose equal batch size $N_1 = N_2 = N/2$.

$$\mathsf{IPW}^{(t)}(s) \equiv \frac{1}{N_t} \frac{\sum_{u=1}^{N_t} \mathbf{1}(A_u^{(t)} = s) Y_u^{(t)}}{e_N^{(t)}(s)}$$

Special cases:

- m = 0: familiar IPW estimator.
- m = 1/2: variance-stabilizing IPW estimator.

- Denote the sampling probabilities $e_N^{(t)}(s) \equiv \mathbb{P}[A_u^{(t)} = s | \mathscr{H}_{t-1}], \mathscr{H}_t \equiv \sigma((A_1^{(t)}, Y_1^{(t)}), ..., (A_N^{(t)}, Y_N^{(t)})).$

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IPW}^{(t)}(s)$$

Our focus:

Weighted IPW (WIPW) estimator, $\widehat{\mathbb{E}}(Y_{\mu}^{(t)}) = 0$ $m \in \{0, 1/2\}$

Simulation setup:

• $Y_{\mu}(0) \sim N(0,1), Y_{\mu}(1) \sim N(-c_N/\sqrt{N},9)$ where $c_N \in \{0, -5, -10, -15\}$.

- $Y_u(0) \sim N(0,1), Y_u(1) \sim N(-c_N/\sqrt{N},9)$ where $c_N \in \{0, -5, -10, -15\}$.
- First stage: a complete randomization, with $e_N^{(1)}(0) = e_N^{(1)}(1) = 0.5$.

- $Y_u(0) \sim N(0,1), Y_u(1) \sim N(-c_N/\sqrt{N},9)$ where $c_N \in \{0, -5, -10, -15\}$.
- First stage: a complete randomization, with $e_N^{(1)}(0) = e_N^{(1)}(1) = 0.5$.
- Second stage: sampling based on DIM = $IPW^{(1)}(0) IPW^{(1)}(1)$ and greedy algorithm.

- $Y_u(0) \sim N(0,1), Y_u(1) \sim N(-c_N/\sqrt{N},9)$ where $c_N \in \{0, -5, -10, -15\}$.
- First stage: a complete randomization, with $e_N^{(1)}(0) = e_N^{(1)}(1) = 0.5$.
- Second stage: sampling based on DIM = $IPW^{(1)}(0) IPW^{(1)}(1)$ and greedy algorithm.

$$m = 1/2$$

 $N = 1000, N_1 = N_2 = 500$

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m}$$

- $Y_{\mu}(0) \sim N(0,1), Y_{\mu}(1) \sim N(-c_N/\sqrt{N},9)$ where $c_N \in \{0, -5, -10, -15\}$.
- First stage: a complete randomization, with $e_{N}^{(1)}$
- Second stage: sampling based on DIM = $IPW^{(1)}(0) IPW^{(1)}(1)$ and greedy algorithm.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m}$$

$$V_{N}^{(1)}(0) = e_{N}^{(1)}(1) = 0.5.$$

- $Y_{\mu}(0) \sim N(0,1), Y_{\mu}(1) \sim N(-c_N/\sqrt{N},9)$ where $c_N \in \{0, -5, -10, -15\}$.
- First stage: a complete randomization, with $e_{N}^{(1)}$
- Second stage: sampling based on DIM = $IPW^{(1)}(0) IPW^{(1)}(1)$ and greedy algorithm.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m}$$

$$V_{N}^{(1)}(0) = e_{N}^{(1)}(1) = 0.5.$$

- $Y_{\mu}(0) \sim N(0,1), Y_{\mu}(1) \sim N(-c_N/\sqrt{N},9)$ where $c_N \in \{0, -5, -10, -15\}$.
- First stage: a complete randomization, with $e_{N}^{(1)}$
- Second stage: sampling based on DIM = $IPW^{(1)}(0) IPW^{(1)}(1)$ and greedy algorithm.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m}$$

$$e_N^{(1)}(0) = e_N^{(1)}(1) = 0.5.$$

- $Y_{\mu}(0) \sim N(0,1), Y_{\mu}(1) \sim N(-c_N/\sqrt{N},9)$ where $c_N \in \{0, -5, -10, -15\}$.
- First stage: a complete randomization, with $e_{N}^{(1)}$
- Second stage: sampling based on DIM = $IPW^{(1)}(0) IPW^{(1)}(1)$ and greedy algorithm.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m}$$

$$V_{N}^{(1)}(0) = e_{N}^{(1)}(1) = 0.5.$$

- $Y_{\mu}(0) \sim N(0,1), Y_{\mu}(1) \sim N(-c_N/\sqrt{N},9)$ where $c_N \in \{0, -5, -10, -15\}$.
- First stage: a complete randomization, with $e_{N}^{(1)}$
- Second stage: sampling based on DIM = $IPW^{(1)}(0) IPW^{(1)}(1)$ and greedy algorithm.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m}$$

$$e_N^{(1)}(0) = e_N^{(1)}(1) = 0.5.$$

Simulation setup:

- $Y_{\mu}(0) \sim N(0,1), Y_{\mu}(1) \sim N(-c_N/\sqrt{N},9)$ where $c_N \in \{0, -5, -10, -15\}$.
- First stage: a complete randomization, with $e_{N}^{(1)}$
- Second stage: sampling based on DIM = $IPW^{(1)}(0) IPW^{(1)}(1)$ and greedy algorithm.

Weak signal

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m}$$

$$e_N^{(1)}(0) = e_N^{(1)}(1) = 0.5.$$

- $Y_{\mu}(0) \sim N(0,1), Y_{\mu}(1) \sim N(-c_N/\sqrt{N},9)$ where $c_N \in \{0, -5, -10, -15\}$.
- First stage: a complete randomization, with $e_{N}^{(1)}$
- Second stage: sampling based on DIM = $IPW^{(1)}(0) IPW^{(1)}(1)$ and greedy algorithm.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m}$$

$$e_N^{(1)}(0) = e_N^{(1)}(1) = 0.5.$$

- $Y_{\mu}(0) \sim N(0,1), Y_{\mu}(1) \sim N(-c_N/\sqrt{N},9)$ where $c_N \in \{0, -5, -10, -15\}$.
- First stage: a complete randomization, with $e_{N}^{(1)}$
- Second stage: sampling based on DIM = $IPW^{(1)}(0) IPW^{(1)}(1)$ and greedy algorithm.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m}$$

$$e_N^{(1)}(0) = e_N^{(1)}(1) = 0.5.$$

- $Y_{\mu}(0) \sim N(0,1), Y_{\mu}(1) \sim N(-c_N/\sqrt{N},9)$ where $c_N \in \{0, -5, -10, -15\}$.
- First stage: a complete randomization, with $e_N^{(.)}$
- Second stage: sampling based on DIM = $IPW^{(1)}(0) IPW^{(1)}(1)$ and greedy algorithm.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m}$$

$$e_N^{(1)}(0) = e_N^{(1)}(1) = 0.5.$$

Triangular array setup: $Y_u(s) = Y_{uN}(s)$ to include local alternative.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IP}^{(t)}(s)$$

Triangular array setup: $Y_u(s) = Y_{uN}(s)$ to include local alternative.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IP}^{(t)}(s)$$

Triangular array setup: $Y_u(s) = Y_{uN}(s)$ to include local alternative.

boundedness assumptions,

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IP}^{(t)}(s)$$

Theorem 1 (Niu and Ren (2025): Define $c_N \equiv \sqrt{N}(\mathbb{E}[Y_{uN}(0)] - \mathbb{E}[Y_{uN}(1)])$. Under moment and

Triangular array setup: $Y_{\mu}(s) = Y_{\mu N}(s)$ to include local alternative.

boundedness assumptions,

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IPV}$$

Theorem 1 (Niu and Ren (2025): Define $c_N \equiv \sqrt{N}(\mathbb{E}[Y_{\mu N}(0)] - \mathbb{E}[Y_{\mu N}(1)])$. Under moment and

 $\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1)) - c_N \xrightarrow{d} \mathbb{W}(c) \text{ for } m \in \{0, 1/2\}$

Triangular array setup: $Y_{\mu}(s) = Y_{\mu N}(s)$ to include local alternative.

Theorem 1 (Niu and Ren (2025): Define $c_N \equiv \sqrt{N(\mathbb{E}[Y_{\mu N}(0)] - \mathbb{E}[Y_{\mu N}(1)])}$. Under moment and boundedness assumptions,

$$\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1)) - c_N \xrightarrow{d} \mathbb{W}(c) \text{ for } m \in \{0, 1/2\}$$

as long as c_N satisfies $\lim c_N = c$ (c can be either finite or infinite). $N \rightarrow \infty$

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IP}^{(t)}(s)$$

Triangular array setup: $Y_{\mu}(s) = Y_{\mu N}(s)$ to include local alternative.

Theorem 1 (Niu and Ren (2025): Define $c_N \equiv \sqrt{N(\mathbb{E}[Y_{\mu N}(0)] - \mathbb{E}[Y_{\mu N}(1)])}$. Under moment and boundedness assumptions,

$$\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1)) - c_N \xrightarrow{d} \mathbb{W}(c) \text{ for } m \in \{0, 1/2\}$$

as long as c_N satisfies $\lim c_N = c$ (*c* can be either finite or infinite). $N \rightarrow \infty$

Note:

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IP}^{(t)}(s)$$

Triangular array setup: $Y_{\mu}(s) = Y_{\mu N}(s)$ to include local alternative.

boundedness assumptions,

$$\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1)) - c_N \xrightarrow{d} \mathbb{W}(c) \text{ for } m \in \{0, 1/2\}$$

as long as c_N satisfies $\lim c_N = c$ (c can be either finite or infinite). $N \rightarrow \infty$

Note:

• Different limit behaviors of $\mathbb{W}(c)$ on signal c.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IP}^{(t)}(s)$$

Theorem 1 (Niu and Ren (2025): Define $c_N \equiv \sqrt{N}(\mathbb{E}[Y_{uN}(0)] - \mathbb{E}[Y_{uN}(1)])$. Under moment and

Triangular array setup: $Y_{\mu}(s) = Y_{\mu N}(s)$ to include local alternative.

boundedness assumptions,

$$\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1)) - c_N \xrightarrow{d} \mathbb{W}(c) \text{ for } m \in \{0, 1/2\}$$

as long as c_N satisfies $\lim c_N = c$ (c can be either finite or infinite). $N \rightarrow \infty$

Note:

- Different limit behaviors of $\mathbb{W}(c)$ on signal c.
- Highly nontrivial proof (requires extend some classical normal approximation results).

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IPV}$$

Theorem 1 (Niu and Ren (2025): Define $c_N \equiv \sqrt{N(\mathbb{E}[Y_{\mu N}(0)] - \mathbb{E}[Y_{\mu N}(1)])}$. Under moment and

Triangular array setup: $Y_{\mu}(s) = Y_{\mu N}(s)$ to include local alternative.

Theorem 1 (Niu and Ren (2025): Define $c_N \equiv \sqrt{N(\mathbb{E}[Y_{\mu N}(0)] - \mathbb{E}[Y_{\mu N}(1)])}$. Under moment and boundedness assumptions,

$$\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1)) - c_N \xrightarrow{d} \mathbb{W}(c) \text{ for } m \in \{0, 1/2\}$$

as long as c_N satisfies $\lim c_N = c$ (c can be either finite or infinite). $N \rightarrow \infty$

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IP}^{(t)}(s)$$

Triangular array setup: $Y_{\mu}(s) = Y_{\mu N}(s)$ to include local alternative.

Theorem 1 (Niu and Ren (2025): Define $c_N \equiv \sqrt{N(\mathbb{E}[Y_{uN}(0)] - \mathbb{E}[Y_{uN}(1)])}$. Under moment and boundedness assumptions,

$$\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1)) - c_N \xrightarrow{d} \mathbb{W}(c) \text{ for } m \in \{0, 1/2\}$$

as long as c_N satisfies $\lim c_N = c$ (c can be either finite or infinite). $N \rightarrow \infty$

Comparison to Hirano and Porter (2023):

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IP}^{(t)}(s)$$

Triangular array setup: $Y_{\mu}(s) = Y_{\mu N}(s)$ to include local alternative.

boundedness assumptions,

$$\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1)) - c_N \xrightarrow{d} \mathbb{W}(c) \text{ for } m \in \{0, 1/2\}$$

as long as c_N satisfies $\lim c_N = c$ (c can be either finite or infinite). $N \rightarrow \infty$

Comparison to Hirano and Porter (2023):

No requirement on potential outcome distribution.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IPV}$$

Theorem 1 (Niu and Ren (2025): Define $c_N \equiv \sqrt{N}(\mathbb{E}[Y_{uN}(0)] - \mathbb{E}[Y_{uN}(1)])$. Under moment and

Triangular array setup: $Y_{\mu}(s) = Y_{\mu N}(s)$ to include local alternative.

boundedness assumptions,

 $\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1))$

as long as c_N satisfies $\lim c_N = c$ (c can be either finite or infinite). $N \rightarrow \infty$

Comparison to Hirano and Porter (2023):

- No requirement on potential outcome distribution.
- Transparency in assumption.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IPV}$$

Theorem 1 (Niu and Ren (2025): Define $c_N \equiv \sqrt{N(\mathbb{E}[Y_{uN}(0)] - \mathbb{E}[Y_{uN}(1)])}$. Under moment and

$$(b) - c_N \xrightarrow{d} \mathbb{W}(c) \quad \text{for} \quad m \in \{0, 1/2\}$$

Triangular array setup: $Y_{\mu}(s) = Y_{\mu N}(s)$ to include local alternative.

boundedness assumptions, $\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1))$

as long as c_N satisfies $\lim c_N = c$ (c can be either finite or infinite).

 $N \rightarrow \infty$

Comparison to Hirano and Porter (2023):

- No requirement on potential outcome distribution.
- Transparency in assumption.
- Tailored towards to a class of estimators.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IPV}$$

Theorem 1 (Niu and Ren (2025): Define $c_N \equiv \sqrt{N(\mathbb{E}[Y_{\mu N}(0)] - \mathbb{E}[Y_{\mu N}(1)])}$. Under moment and

$$(b) - c_N \xrightarrow{d} \mathbb{W}(c) \quad \text{for} \quad m \in \{0, 1/2\}$$

Triangular array setup: $Y_{\mu}(s) = Y_{\mu N}(s)$ to include local alternative.

boundedness assumptions, $\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1))$

as long as c_N satisfies $\lim c_N = c$ (c can be either finite or infinite).

 $N \rightarrow \infty$

Comparison to Hirano and Porter (2023):

- No requirement on potential outcome distribution.
- Transparency in assumption.
- Tailored towards to a class of estimators.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IPV}$$

Theorem 1 (Niu and Ren (2025): Define $c_N \equiv \sqrt{N(\mathbb{E}[Y_{\mu N}(0)] - \mathbb{E}[Y_{\mu N}(1)])}$. Under moment and

$$(b) - c_N \xrightarrow{d} \mathbb{W}(c) \quad \text{for} \quad m \in \{0, 1/2\}$$

Comparison to Hadad et al. (2021):

Triangular array setup: $Y_{\mu}(s) = Y_{\mu N}(s)$ to include local alternative.

boundedness assumptions, $\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1))$

as long as c_N satisfies $\lim c_N = c$ (c can be either finite or infinite).

 $N \rightarrow \infty$

Comparison to Hirano and Porter (2023):

- Same test statistic considered in both papers (m = 1/2). No requirement on potential outcome distribution.
- Transparency in assumption.
- Tailored towards to a class of estimators.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IPV}$$

Theorem 1 (Niu and Ren (2025): Define $c_N \equiv \sqrt{N}(\mathbb{E}[Y_{\mu N}(0)] - \mathbb{E}[Y_{\mu N}(1)])$. Under moment and

$$(b) - c_N \xrightarrow{d} \mathbb{W}(c) \quad \text{for} \quad m \in \{0, 1/2\}$$

Comparison to Hadad et al. (2021):

Triangular array setup: $Y_{\mu}(s) = Y_{\mu N}(s)$ to include local alternative.

boundedness assumptions, $\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1))$

as long as c_N satisfies $\lim c_N = c$ (c can be either finite or infinite).

 $N \rightarrow \infty$

Comparison to Hirano and Porter (2023):

- Same test statistic considered in both papers (m = 1/2). No requirement on potential outcome distribution.
- Transparency in assumption.
- Tailored towards to a class of estimators.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IPV}$$

Theorem 1 (Niu and Ren (2025): Define $c_N \equiv \sqrt{N}(\mathbb{E}[Y_{\mu N}(0)] - \mathbb{E}[Y_{\mu N}(1)])$. Under moment and

$$(b) - c_N \xrightarrow{d} \mathbb{W}(c) \quad \text{for} \quad m \in \{0, 1/2\}$$

Comparison to Hadad et al. (2021):

Full-spectrum signal strength.

Triangular array setup: $Y_{\mu}(s) = Y_{\mu N}(s)$ to include local alternative.

boundedness assumptions, $\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1))$

as long as c_N satisfies $\lim c_N = c$ (c can be either finite or infinite).

 $N \rightarrow \infty$

Comparison to Hirano and Porter (2023):

- Same test statistic considered in both papers (m = 1/2). No requirement on potential outcome distribution.
- Transparency in assumption.
- Tailored towards to a class of estimators.

WIPW(s)
$$\equiv \sum_{t=1}^{2} \frac{(e_N^{(t)}(s))^m}{\sum_{t=1}^{2} (e_N^{(t)}(s))^m} \mathsf{IPV}$$

Theorem 1 (Niu and Ren (2025): Define $c_N \equiv \sqrt{N}(\mathbb{E}[Y_{\mu N}(0)] - \mathbb{E}[Y_{\mu N}(1)])$. Under moment and

$$(b) - c_N \xrightarrow{d} \mathbb{W}(c) \quad \text{for} \quad m \in \{0, 1/2\}$$

Comparison to Hadad et al. (2021):

- Full-spectrum signal strength.
- Tailored towards to two-stage experiments.

Theorem 2 (Niu and Ren (2025), informal result): Under the assumptions of Theorem 1, then we have

Asymptotic

Sampling

• When $c \in (-\infty, \infty)$, $\mathbb{W}(c)$ is non-normal.

- When $c \in (-\infty, \infty)$, $\mathbb{W}(c)$ is non-normal.
- When $c \in \{-\infty, \infty\}$, $\mathbb{W}(c)$ is normal.

- When $c \in (-\infty, \infty)$, $\mathbb{W}(c)$ is non-normal.
- When $c \in \{-\infty, \infty\}$, $\mathbb{W}(c)$ is normal.
- Smooth transition in two regimes: $W_1(\mathbb{W}(c), \mathbb{W})$ distance).

$$\mathbb{V}(-\infty)) \to 0$$
 as $c \to -\infty$ (W_1 : 1-Wasserstein

- When $c \in (-\infty, \infty)$, $\mathbb{W}(c)$ is non-normal.
- When $c \in \{-\infty, \infty\}$, $\mathbb{W}(c)$ is normal.
- Smooth transition in two regimes: $W_1(\mathbb{W}(c), \mathbb{W})$ distance).

$$\mathbb{V}(-\infty)) \to 0$$
 as $c \to -\infty$ (W_1 : 1-Wasserstein

An asymptotically valid, yet impractical test:

An asymptotically valid, yet impractical test:

- $\phi \equiv \mathbf{1}(\sqrt{N}(\text{WIPW}(0) \text{WIPW}(1)) > \mathbb{Q}_{1-\alpha}(\mathbb{W}(0))).$

An asymptotically valid, yet impractical test: $\phi \equiv \mathbf{1}(\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1)) > \mathbb{Q}_{1-\alpha}(\mathbb{W}(0))).$

Statistical challenge: intractable quantile $\mathbb{Q}_{1-\alpha}(\mathbb{W}(0))$.

- An asymptotically valid, yet impractical test: $\phi \equiv \mathbf{1}(\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1)) > \mathbb{Q}_{1-\alpha}(\mathbb{W}(0))).$
- Statistical challenge: intractable quantile $\mathbb{Q}_{1-\alpha}(\mathbb{W}(0))$. A key observation:

- An asymptotically valid, yet impractical test: $\phi \equiv \mathbf{1}(\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1)) > \mathbb{Q}_{1-\alpha}(\mathbb{W}(0))).$
- Statistical challenge: intractable quantile $\mathbb{Q}_{1-\alpha}(\mathbb{W}(0))$. A key observation:

- An asymptotically valid, yet impractical test: $\phi \equiv \mathbf{1}(\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1)) > \mathbb{Q}_{1-\alpha}(\mathbb{W}(0))).$
- Statistical challenge: intractable quantile $\mathbb{Q}_{1-\alpha}(\mathbb{W}(0))$. A key observation:
 - t=1
 - $A^{(1)} = (A^{(1)}(0), A^{(1)}(1)) \sim N(0, \Sigma^{(1)}).$

 $\mathbb{W}(0) \stackrel{d}{=} \sum_{t=1}^{2} G_t(A^{(t)}(0), A^{(t)}(1)).$

An asymptotically valid, yet impractical test: $\phi \equiv \mathbf{1}(\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1)) > \mathbb{Q}_{1-\alpha}(\mathbb{W}(0))).$

Statistical challenge: intractable quantile $\mathbb{Q}_{1-\alpha}(\mathbb{W}(0))$. A key observation:

$$\mathbb{W}(0) \stackrel{d}{=} \sum_{t=1}^{2}$$

• $A^{(1)} = (A^{(1)}(0), A^{(1)}(1)) \sim N(0, \Sigma^{(1)}).$

• $A^{(2)} = (A^{(2)}(0), A^{(2)}(1)) | A^{(1)} \sim N(0, \Sigma^{(2)}(A^{(1)})).$

 $G_t(A^{(t)}(0), A^{(t)}(1)).$

- An asymptotically valid, yet impractical test: $\phi \equiv \mathbf{1}(\sqrt{N}(\text{WIPW}(0) - \text{WIPW}(1)) > \mathbb{Q}_{1-\alpha}(\mathbb{W}(0))).$
- Statistical challenge: intractable quantile $\mathbb{Q}_{1-\alpha}(\mathbb{W}(0))$. A key observation:

$$\mathbb{W}(0) \stackrel{d}{=} \sum_{t=1}^{2}$$

- $A^{(1)} = (A^{(1)}(0), A^{(1)}(1)) \sim N(0, \Sigma^{(1)}).$
- $A^{(2)} = (A^{(2)}(0), A^{(2)}(1)) | A^{(1)} \sim N(0, \Sigma^{(2)}(A^{(1)})).$
- G_t : involving nuisance parameter but can be estimated.

 $G_t(A^{(t)}(0), A^{(t)}(1)).$

14

A two-stage plug-in bootstrap

• Stage 1: sample $\tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(1)})$.

- Stage 1: sample $\tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(1)})$.
- Stage 2: sample $\tilde{A}^{(2)} | \tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(2)}(\tilde{A}^{(1)})).$

- Stage 1: sample $\tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(1)})$.
- Stage 2: sample $\tilde{A}^{(2)} | \tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(2)}(\tilde{A}^{(1)})).$
- Obtain bootstrap sample:

- Stage 1: sample $\tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(1)})$.
- Stage 2: sample $\tilde{A}^{(2)} | \tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(2)}(\tilde{A}^{(1)}))$
- Obtain bootstrap sample:

$$\mathcal{D} = \sum_{t=1}^{2} \widehat{G}_{t}(\widetilde{A}^{(1)}(0), \widetilde{A}^{(1)}(1)).$$

$$\mathbb{W}(0) \stackrel{d}{=} \sum_{t=1}^{2} G_{t}(A^{(t)}(0), A^{(t)}(1))$$

A two-stage plug-in bootstrap

- Stage 1: sample $\tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(1)})$.
- Stage 2: sample $\tilde{A}^{(2)} | \tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(2)}(\tilde{A}^{(1)})).$
- Obtain bootstrap sample:

$$\mathcal{D} = \sum_{t=1}^{2} \widehat{G}_{t}(\widetilde{A}^{(1)}(0), \widetilde{A}^{(1)}(1)).$$

A two-stage plug-in bootstrap

- Stage 1: sample $\tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(1)})$.
- Stage 2: sample $\tilde{A}^{(2)} | \tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(2)}(\tilde{A}^{(1)})).$
- Obtain bootstrap sample:

$$\mathcal{D} = \sum_{t=1}^{2} \widehat{G}_{t}(\widetilde{A}^{(1)}(0), \widetilde{A}^{(1)}(1)).$$

A two-stage plug-in bootstrap

- Stage 1: sample $\tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(1)})$.
- Stage 2: sample $\tilde{A}^{(2)} | \tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(2)}(\tilde{A}^{(1)})).$
- Obtain bootstrap sample:

$$\mathcal{D} = \sum_{t=1}^{2} \widehat{G}_{t}(\widetilde{A}^{(1)}(0), \widetilde{A}^{(1)}(1)).$$

A two-stage plug-in bootstrap

- Stage 1: sample $\tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(1)})$.
- Stage 2: sample $\tilde{A}^{(2)} | \tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(2)}(\tilde{A}^{(1)})).$
- Obtain bootstrap sample:

$$\mathcal{D} = \sum_{t=1}^{2} \widehat{G}_{t}(\widetilde{A}^{(1)}(0), \widetilde{A}^{(1)}(1)).$$

Theorem 3 (N. and Ren (2025)): Suppose $\mathscr{G}_N \equiv \sigma$ (two-stage data). Then the bootstrap procedure is valid:

A two-stage plug-in bootstrap

- Stage 1: sample $\tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(1)})$.
- Stage 2: sample $\tilde{A}^{(2)} | \tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(2)}(\tilde{A}^{(1)})).$
- Obtain bootstrap sample:

$$\mathcal{D} = \sum_{t=1}^{2} \widehat{G}_{t}(\widetilde{A}^{(1)}(0), \widetilde{A}^{(1)}(1)).$$

Theorem 3 (N. and Ren (2025)): Suppose $\mathscr{G}_N \equiv \sigma$ (two-stage data). Then the bootstrap procedure is valid:

 $t \in \mathbb{R}$

 $\sup |\mathbb{P}[\mathscr{D} \le t \,|\, \mathscr{G}_n] - \mathbb{P}[\mathbb{W}(0) \le t]| = o_p(1).$

A two-stage plug-in bootstrap

- Stage 1: sample $\tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(1)})$.
- Stage 2: sample $\tilde{A}^{(2)} | \tilde{A}^{(1)} \sim N(\mathbf{0}, \widehat{\Sigma}^{(2)}(\tilde{A}^{(1)})).$
- Obtain bootstrap sample:

$$\mathcal{D} = \sum_{t=1}^{2} \widehat{G}_{t}(\widetilde{A}^{(1)}(0), \widetilde{A}^{(1)}(1)).$$

valid:

 $\sup |\mathbb{P}[\mathcal{D} \leq t | \mathcal{G}_n] \cdot$ $t \in \mathbb{R}$

Moreover, the test $\phi_b \equiv \mathbf{1}(\sqrt{N(WIPW(0) - WIPW(1))} > \mathbb{Q}_{1-\alpha}(\mathscr{D} \mid \mathscr{G}_N))$ is asymptotically valid.

Theorem 3 (N. and Ren (2025)): Suppose $\mathscr{G}_N \equiv \sigma$ (two-stage data). Then the bootstrap procedure is

$$-\mathbb{P}[\mathbb{W}(0) \le t] \mid = o_p(1).$$

Data generation details:

Data generation details:

Potential outcome distributions:

Data generation details:

Potential outcome distributions:

 $Y(0) \sim N(\theta, 1), Y(1) \sim N(0, 0.25);$

Data generation details:

Potential outcome distributions:

 $Y(0) \sim N(\theta, 1), Y(1) \sim N(0, 0.25);$

 $Y(0) \sim \text{Ber}(\theta + 0.5), Y(1) \sim \text{Ber}(0.5).$

Data generation details:

Potential outcome distributions:

 $Y(0) \sim N(\theta, 1), Y(1) \sim N(0, 0.25);$

 $Y(0) \sim \text{Ber}(\theta + 0.5), Y(1) \sim \text{Ber}(0.5).$

Balanced first stage sampling:

Data generation details:

Potential outcome distributions:

 $Y(0) \sim N(\theta, 1), Y(1) \sim N(0, 0.25);$

 $Y(0) \sim \text{Ber}(\theta + 0.5), Y(1) \sim \text{Ber}(0.5).$

Balanced first stage sampling:

Equal probability sampling.

Data generation details:

Potential outcome distributions:

 $Y(0) \sim N(\theta, 1), Y(1) \sim N(0, 0.25);$

 $Y(0) \sim \text{Ber}(\theta + 0.5), Y(1) \sim \text{Ber}(0.5).$

Balanced first stage sampling:

Equal probability sampling.

• Sampling algorithm:

Data generation details:

Potential outcome distributions:

 $Y(0) \sim N(\theta, 1), Y(1) \sim N(0, 0.25);$

 $Y(0) \sim \text{Ber}(\theta + 0.5), Y(1) \sim \text{Ber}(0.5).$

Balanced first stage sampling:

Equal probability sampling.

• Sampling algorithm:

Modified Thompson sampling with clipping ε .

15

Data generation details:

Potential outcome distributions:

 $Y(0) \sim N(\theta, 1), Y(1) \sim N(0, 0.25);$

 $Y(0) \sim \text{Ber}(\theta + 0.5), Y(1) \sim \text{Ber}(0.5).$

Balanced first stage sampling:

Equal probability sampling.

• Sampling algorithm:

Modified Thompson sampling with clipping ε .

Data generation details:

Potential outcome distributions:

 $Y(0) \sim N(\theta, 1), Y(1) \sim N(0, 0.25);$

 $Y(0) \sim \text{Ber}(\theta + 0.5), Y(1) \sim \text{Ber}(0.5).$

Balanced first stage sampling:

Equal probability sampling.

• Sampling algorithm:

Modified Thompson sampling with clipping ε .

Test statistic choices:

Data generation details:

Potential outcome distributions:

 $Y(0) \sim N(\theta, 1), Y(1) \sim N(0, 0.25);$

 $Y(0) \sim \text{Ber}(\theta + 0.5), Y(1) \sim \text{Ber}(0.5).$

Balanced first stage sampling:

Equal probability sampling.

• Sampling algorithm:

Modified Thompson sampling with clipping ε .

Test statistic choices:

1. {(WIPW(0) – WIPW(1))} × {m = 0, m = 1/2}.

Data generation details:

Potential outcome distributions:

 $Y(0) \sim N(\theta, 1), Y(1) \sim N(0, 0.25);$

 $Y(0) \sim \text{Ber}(\theta + 0.5), Y(1) \sim \text{Ber}(0.5).$

Balanced first stage sampling:

Equal probability sampling.

• Sampling algorithm:

Modified Thompson sampling with clipping ε .

Test statistic choices:

1. {(WIPW(0) – WIPW(1))} × {m = 0, m = 1/2}.

2. {(WIPW(0) – WIPW(1))/ $\hat{\sigma}$ } × {m = 0, m = 1/2}.

1/2.

Data generation details:

Potential outcome distributions:

 $Y(0) \sim N(\theta, 1), Y(1) \sim N(0, 0.25);$

 $Y(0) \sim \text{Ber}(\theta + 0.5), Y(1) \sim \text{Ber}(0.5).$

Balanced first stage sampling:

Equal probability sampling.

• Sampling algorithm:

Modified Thompson sampling with clipping ε .

Test statistic choices:

1. {(WIPW(0) – WIPW(1))} × {m = 0, m = 1/2}.

2. {(WIPW(0) – WIPW(1))/ $\hat{\sigma}$ } × {m = 0, m = 1/2}.

3. Sample-splitting with IPW estimator.

1/2.

 $\theta = 0$: null hypothesis

 $\theta = 0$: null hypothesis

Main messages:

 $\theta = 0$: null hypothesis

Main messages:

Main messages:

• Type-I error control: all the tests.

Normalized Unnormalized Sample-splitting

Main messages:

Normalized Unnormalized Sample-splitting	 m = 0 (IPW) m = 1/2 (variance
Sample-splitting	

Main messages:

Main messages:

- Type-I error control: all the tests.
- Power: m = 1/2 > m = 0 > sample-splitting.

- Type-I error control: all the tests.
- Power: m = 1/2 > m = 0 > sample-splitting.
- Non-equivalence of two normalization schemes.

- Type-I error control: all the tests.
- Power: m = 1/2 > m = 0 > sample-splitting.
- Non-equivalence of two normalization schemes.

- Type-I error control: all the tests.
- Power: m = 1/2 > m = 0 > sample-splitting.
- Non-equivalence of two normalization schemes.

- Type-I error control: all the tests.
- Power: m = 1/2 > m = 0 > sample-splitting.
- Non-equivalence of two normalization schemes.
- m = 1/2 (solid line) is robust to overlap decay.

- Type-I error control: all the tests.
- Power: m = 1/2 > m = 0 > sample-splitting.
- Non-equivalence of two normalization schemes.
- m = 1/2 (solid line) is robust to overlap decay.
- Left-sided and right-sided tests have asymmetric power curves.

- Type-I error control: all the tests.
- Power: m = 1/2 > m = 0 > sample-splitting.
- Non-equivalence of two normalization schemes.
- m = 1/2 (solid line) is robust to overlap decay.
- Left-sided and right-sided tests have asymmetric power curves.

Numerical simulation

Main messages:

- Type-I error control: all the tests.
- Power: m = 1/2 > m = 0 > sample-splitting.
- Non-equivalence of two normalization schemes.
- m = 1/2 (solid line) is robust to overlap decay.
- Left-sided and right-sided tests have asymmetric power curves.

Takeaways

response-adaptive experiments under minimal assumptions.

• We establish full-spectrum weak limits of WIPW statistics under two-stage

- We establish full-spectrum weak limits of WIPW statistics under two-stage response-adaptive experiments under minimal assumptions.
- We propose a fast bootstrap procedure to perform practical hypothesis testing.

- We establish full-spectrum weak limits of WIPW statistics under two-stage response-adaptive experiments under minimal assumptions.
- We propose a fast bootstrap procedure to perform practical hypothesis testing.
- We sketch out several extensions on sampling algorithms, involving:

- We establish full-spectrum weak limits of WIPW statistics under two-stage response-adaptive experiments under minimal assumptions.
- We propose a fast bootstrap procedure to perform practical hypothesis testing.
- We sketch out several extensions on sampling algorithms, involving:
 - Stopping time.

- We establish full-spectrum weak limits of WIPW statistics under two-stage response-adaptive experiments under minimal assumptions.
- We propose a fast bootstrap procedure to perform practical hypothesis testing.
- We sketch out several extensions on sampling algorithms, involving:
 - Stopping time.
 - Early dropping.

Takeaways

- We establish full-spectrum weak limits of WIPW statistics under two-stage response-adaptive experiments under minimal assumptions.
- We propose a fast bootstrap procedure to perform practical hypothesis testing.
- We sketch out several extensions on sampling algorithms, involving:
 - Stopping time.
 - Early dropping.

Limitations and future work

Takeaways

- We establish full-spectrum weak limits of WIPW statistics under two-stage response-adaptive experiments under minimal assumptions.
- We propose a fast bootstrap procedure to perform practical hypothesis testing.
- We sketch out several extensions on sampling algorithms, involving:
 - Stopping time.
 - Early dropping.

Limitations and future work

Help plan experiment to maximize statistical power.

Takeaways

- We establish full-spectrum weak limits of WIPW statistics under two-stage response-adaptive experiments under minimal assumptions.
- We propose a fast bootstrap procedure to perform practical hypothesis testing.
- We sketch out several extensions on sampling algorithms, involving:
 - Stopping time.
 - Early dropping.

Limitations and future work

- Help plan experiment to maximize statistical power.
- Extend beyond two-stage experiments: fully adaptive sampling.

Takeaways

- We establish full-spectrum weak limits of WIPW statistics under two-stage response-adaptive experiments under minimal assumptions.
- We propose a fast bootstrap procedure to perform practical hypothesis testing.
- We sketch out several extensions on sampling algorithms, involving:
 - Stopping time.
 - Early dropping.

Limitations and future work

- Help plan experiment to maximize statistical power.
- Extend beyond two-stage experiments: fully adaptive sampling.
- Explore the optimality within the class of WAIPW test statistics.

Assumption-lean weak limits and tes arXiv, 2025.

Assumption-lean weak limits and tests for two-stage adaptive experiments. In