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Challenge: pooled data (A", Y3”),eqn 1.2 @re highly dependent
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1. Theoretically: New assumption-lean weak limits of commonly used test
statistics under minimal assumptions.

2. Methodologically: A fast bootstrap procedure for sampling from the limiting
distribution and apply it for hypothesis testing.
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. Denote the sampling probabilities ejg)(s) = IP[AL(P =s|#,_ |, X, = o((AD,Y 1@), (A(t) Y (t)))

N

N
f 1(A§j> =YY - EXYY) __
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Test statistics: suppose equal batch size N; = N, = N/2.
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Special cases: Our focus:
. m = 0: familiar IPW estimator. Weighted IPW (WIPW) estimator, E (Y) = 0
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. Y,(0) ~ N(0,1), Y, (1) ~ N(—cy/A/N,9) where cy € {0, — 5, — 10, — 15}.
. First stage: a complete randomization, with ezi,l)(()) = ezi,l)(l) = 0.5.

. Second stage: sampling based on DIM = IPW()(0) — IPW)(1) and greedy algorithm.

cn=0 CN=-9 cny=-10 cn=-15

What role does
signal strength
play here?
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New weak limits for WIPW T

(ey
WIPW(s) =
Z:, Yo (e )y

IPW(s)

Triangular array setup: Y, (s) = Y, ,(s) to include local alternative.

Note:

+ Different limit behaviors of W(c) on signal c.

* Highly nontrivial proof (requires extend some classical normal approximation results).

11 1: Chatterjee and Meckes (2008)
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Comparison to Hirano and Porter (2023): Comparison to Hadad et al. (2021):

* No requirement on potential outcome distribution. « Same test statistic considered in both papers (m = 1/2).
* Transparency in assumption.

 Tailored towards to a class of estimators.

* Full-spectrum signal strength.
* Tailored towards to two-stage experiments.
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» Balanced first stage sampling:
Equal probability sampling.
» Sampling algorithm:

Modified Thompson sampling with clipping &.

Test statistic choices:
1. {(WIPW(0) = WIPW(1)} X {m =0, m = 1/2}.

2. {(WIPW(0) — WIPW(1))/6} X {m =0, m=1/2}.
3. Sample-splitting with IPW estimator.
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* \We propose a fast bootstrap procedure to perform practical hypothesis testing.

* \We sketch out several extensions on sampling algorithms, involving:
e Stopping time.
* Early dropping.

Limitations and future work

* Help plan experiment to maximize statistical power.

* Extend beyond two-stage experiments: fully adaptive sampling.

» Explore the optimality within the class of WAIPW test statistics.
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