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Theorem 3 (N. and Ren (2025)): Suppose . Then the bootstrap procedure is 
valid:

𝒢N ≡ σ(two-stage data)

.sup
t∈ℝ

|ℙ[𝒟 ≤ t |𝒢n] − ℙ[𝕎(0) ≤ t] | = op(1)

Moreover, the test  is asymptotically valid.ϕb ≡ 1( N(WIPW(0) − WIPW(1)) > ℚ1−α(𝒟 |𝒢N))

A two-stage plug-in bootstrap 
•  Stage 1: sample  .Ã(1) ∼ N(0, ̂Σ (1))
•  Stage 2: sample .Ã(2) | Ã(1) ∼ N(0, ̂Σ (2)(Ã(1)))
•  Obtain bootstrap sample:

.𝒟 =
2

∑
t=1

̂G t(Ã(1)(0), Ã(1)(1))

𝕎(0) d=
2

∑
t=1

Gt(A(t)(0), A(t)(1))
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Data generation details:

•  Potential outcome distributions: 


;


.


•  Balanced first stage sampling: 

Equal probability sampling.


•  Sampling algorithm:


Modified Thompson sampling with clipping .


Test statistic choices:

1. .


2. .


3. Sample-splitting with IPW estimator.

Y(0) ∼ N(θ,1), Y(1) ∼ N(0,0.25)
Y(0) ∼ Ber(θ + 0.5), Y(1) ∼ Ber(0.5)

ε

{(WIPW(0) − WIPW(1))} × {m = 0, m = 1/2}
{(WIPW(0) − WIPW(1))/ ̂σ} × {m = 0, m = 1/2}

f
1 − ε

ε
0

1/2



Numerical simulation

15



Numerical simulation

15

: null hypothesisθ = 0



Numerical simulation

15

Main messages:

: null hypothesisθ = 0



Numerical simulation

15

Main messages:
•  Type-I error control: all the tests.

: null hypothesisθ = 0



Numerical simulation

15

Main messages:
•  Type-I error control: all the tests.



Numerical simulation

15

Main messages:
•  Type-I error control: all the tests.

Normalized
Unnormalized

Sample-splitting



Numerical simulation

15

Main messages:
•  Type-I error control: all the tests.

Normalized
Unnormalized

Sample-splitting
m = 0 (IPW)

m = 1/2 (variance-stablizing IPW)



Numerical simulation

15

Main messages:
•  Type-I error control: all the tests.

Normalized
Unnormalized

Sample-splitting
m = 0 (IPW)

m = 1/2 (variance-stablizing IPW)



Numerical simulation

15

Main messages:
•  Type-I error control: all the tests.

Normalized
Unnormalized

Sample-splitting
m = 0 (IPW)

m = 1/2 (variance-stablizing IPW)



Numerical simulation

15

Main messages:
•  Type-I error control: all the tests.

•  Power:  >  > sample-splitting.m = 1/2 m = 0

Normalized
Unnormalized

Sample-splitting
m = 0 (IPW)

m = 1/2 (variance-stablizing IPW)



Numerical simulation

15

Main messages:
•  Type-I error control: all the tests.

•  Power:  >  > sample-splitting.m = 1/2 m = 0
•  Non-equivalence of two normalization schemes. 

Normalized
Unnormalized

Sample-splitting
m = 0 (IPW)

m = 1/2 (variance-stablizing IPW)



Numerical simulation

15

Main messages:
•  Type-I error control: all the tests.

•  Power:  >  > sample-splitting.m = 1/2 m = 0
•  Non-equivalence of two normalization schemes. 

Normalized
Unnormalized

Sample-splitting
m = 0 (IPW)

m = 1/2 (variance-stablizing IPW)



Numerical simulation

15

Main messages:
•  Type-I error control: all the tests.

•  Power:  >  > sample-splitting.m = 1/2 m = 0
•  Non-equivalence of two normalization schemes. 

Normalized
Unnormalized

Sample-splitting
m = 0 (IPW)

m = 1/2 (variance-stablizing IPW)



Numerical simulation

15

Main messages:
•  Type-I error control: all the tests.

•  Power:  >  > sample-splitting.m = 1/2 m = 0
•  Non-equivalence of two normalization schemes. 

•   (solid line) is robust to overlap decay.m = 1/2

Normalized
Unnormalized

Sample-splitting
m = 0 (IPW)

m = 1/2 (variance-stablizing IPW)



Numerical simulation

15

Main messages:
•  Type-I error control: all the tests.

•  Power:  >  > sample-splitting.m = 1/2 m = 0
•  Non-equivalence of two normalization schemes. 

•   (solid line) is robust to overlap decay.m = 1/2
•  Left-sided and right-sided tests have asymmetric 
power curves.

Normalized
Unnormalized

Sample-splitting
m = 0 (IPW)

m = 1/2 (variance-stablizing IPW)



Numerical simulation

15

Main messages:
•  Type-I error control: all the tests.

•  Power:  >  > sample-splitting.m = 1/2 m = 0
•  Non-equivalence of two normalization schemes. 

•   (solid line) is robust to overlap decay.m = 1/2
•  Left-sided and right-sided tests have asymmetric 
power curves.

Normalized
Unnormalized

Sample-splitting
m = 0 (IPW)

m = 1/2 (variance-stablizing IPW)

c = 0 c = −5 c = −10 c = −15

−10 0 10 20 −10 0 10 20 −10 0 10 20 −10 0 10 20



Numerical simulation

15

Main messages:
•  Type-I error control: all the tests.

•  Power:  >  > sample-splitting.m = 1/2 m = 0
•  Non-equivalence of two normalization schemes. 

•   (solid line) is robust to overlap decay.m = 1/2
•  Left-sided and right-sided tests have asymmetric 
power curves.

Normalized
Unnormalized

Sample-splitting
m = 0 (IPW)

m = 1/2 (variance-stablizing IPW)

c = 0 c = −5 c = −10 c = −15

−10 0 10 20 −10 0 10 20 −10 0 10 20 −10 0 10 20



Discussion

16



Discussion
Takeaways

16



Discussion
Takeaways
• We establish full-spectrum weak limits of WIPW statistics under two-stage 

response-adaptive experiments under minimal assumptions.

16



Discussion
Takeaways
• We establish full-spectrum weak limits of WIPW statistics under two-stage 

response-adaptive experiments under minimal assumptions.
• We propose a fast bootstrap procedure to perform practical hypothesis testing.

16



Discussion
Takeaways
• We establish full-spectrum weak limits of WIPW statistics under two-stage 

response-adaptive experiments under minimal assumptions.
• We propose a fast bootstrap procedure to perform practical hypothesis testing.
• We sketch out several extensions on sampling algorithms, involving:

16



Discussion
Takeaways
• We establish full-spectrum weak limits of WIPW statistics under two-stage 

response-adaptive experiments under minimal assumptions.
• We propose a fast bootstrap procedure to perform practical hypothesis testing.
• We sketch out several extensions on sampling algorithms, involving:
• Stopping time.

16



Discussion
Takeaways
• We establish full-spectrum weak limits of WIPW statistics under two-stage 

response-adaptive experiments under minimal assumptions.
• We propose a fast bootstrap procedure to perform practical hypothesis testing.
• We sketch out several extensions on sampling algorithms, involving:
• Stopping time.

• Early dropping.

16



Discussion
Takeaways
• We establish full-spectrum weak limits of WIPW statistics under two-stage 

response-adaptive experiments under minimal assumptions.
• We propose a fast bootstrap procedure to perform practical hypothesis testing.
• We sketch out several extensions on sampling algorithms, involving:
• Stopping time.

• Early dropping.

16

Limitations and future work



Discussion
Takeaways
• We establish full-spectrum weak limits of WIPW statistics under two-stage 

response-adaptive experiments under minimal assumptions.
• We propose a fast bootstrap procedure to perform practical hypothesis testing.
• We sketch out several extensions on sampling algorithms, involving:
• Stopping time.

• Early dropping.

16

Limitations and future work
• Help plan experiment to maximize statistical power.



Discussion
Takeaways
• We establish full-spectrum weak limits of WIPW statistics under two-stage 

response-adaptive experiments under minimal assumptions.
• We propose a fast bootstrap procedure to perform practical hypothesis testing.
• We sketch out several extensions on sampling algorithms, involving:
• Stopping time.

• Early dropping.

16

Limitations and future work
• Help plan experiment to maximize statistical power.

• Extend beyond two-stage experiments: fully adaptive sampling.



Discussion
Takeaways
• We establish full-spectrum weak limits of WIPW statistics under two-stage 

response-adaptive experiments under minimal assumptions.
• We propose a fast bootstrap procedure to perform practical hypothesis testing.
• We sketch out several extensions on sampling algorithms, involving:
• Stopping time.

• Early dropping.

16

Limitations and future work
• Help plan experiment to maximize statistical power.

• Extend beyond two-stage experiments: fully adaptive sampling.

• Explore the optimality within the class of WAIPW test statistics.
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