Detect model miscalibration via your nearest neighbor

Bernoulli-*ims* Aug 14, 2024

Ziang Niu

Collaborators

Anirban Chatterjee

Bhaswar Bikram Bhattacharya

Statistical task (loose): find out whether a trained supervised model $\hat{f} : \mathbb{R}^d \mapsto \{0,1\}$ can produce "reliable" prediction.

Statistical task (loose): find out whether a trained supervised model $\hat{f} : \mathbb{R}^d \mapsto \{0,1\}$ can produce "reliable" prediction.

Statistical task (loose): find out whether a trained supervised model $\hat{f} : \mathbb{R}^d \mapsto \{0,1\}$ can produce "reliable" prediction.

For the prediction $\hat{f}(\mathbf{Z}) = w$, it actually rains $\mathbb{E}[Y | \hat{f}(\mathbf{Z}) = w] = p$

Statistical task (loose): find out whether a trained supervised model $\hat{f}: \mathbb{R}^d \mapsto \{0,1\}$ can produce "reliable" prediction.

For the prediction $\hat{f}(\mathbf{Z}) = w$, it actually rains $\mathbb{E}[Y | \hat{f}(\mathbf{Z}) = w] = p$

If $w \approx p$, it is a reliable prediction at prediction w.

High-stakes application: auto-drive program

 $f(\mathbf{Z})$: Car hit pedestrian

$\mathbb{E}[\mathbf{Y} | \hat{f}(\mathbf{Z}) = 0.0001] = 0.1$

Hypothesis formulation (classification): For joint distribution $\mathscr{L}_n(\mathbf{Y}, \text{Bern}(\hat{f}(\mathbf{Z})))$, test the null hypothesis of calibration:

Hypothesis formulation (classification): For joint distribution $\mathscr{L}_n(\mathbf{Y}, \text{Bern}(\widehat{f}(\mathbf{Z})))$, test the null hypothesis of calibration:

$H_0: \hat{f}(\mathbf{Z}) = \mathbb{P}[\mathbf{Y} = 1 \mid \hat{f}(\mathbf{Z})] \text{ almost surely }.$

Hypothesis formulation (classification): For joint distribution $\mathscr{L}_n(\mathbf{Y}, \text{Bern}(\widehat{f}(\mathbf{Z})))$, test the null hypothesis of calibration:

Equivalently,

$H_0: \hat{f}(\mathbf{Z}) = \mathbb{P}[\mathbf{Y} = 1 \mid \hat{f}(\mathbf{Z})] \text{ almost surely }.$

Hypothesis formulation (classification): For joint distribution $\mathscr{L}_n(\mathbf{Y}, \text{Bern}(f(\mathbf{Z})))$, test the null hypothesis of calibration:

Equivalently,

$H_0: \hat{f}(\mathbf{Z}) = \mathbb{P}[\mathbf{Y} = 1 \mid \hat{f}(\mathbf{Z})] \text{ almost surely }.$

$H_0: \mathbb{P}[\mathbf{X} = 1 | \hat{f}(\mathbf{Z})] = \mathbb{P}[\mathbf{Y} = 1 | \hat{f}(\mathbf{Z})] \text{ almost surely}, \mathbf{X} \sim \text{Bern}(\hat{f}(\mathbf{Z})).$

Hypothesis formulation (classification): For joint distribution $\mathscr{L}_n(\mathbf{Y}, \text{Bern}(f(\mathbf{Z})))$, test the null hypothesis of calibration:

Equivalently,

We are interested in the hypothesis

$H_0: \hat{f}(\mathbf{Z}) = \mathbb{P}[\mathbf{Y} = 1 \mid \hat{f}(\mathbf{Z})] \text{ almost surely }.$

$H_0: \mathbb{P}[\mathbf{X} = 1 | \hat{f}(\mathbf{Z})] = \mathbb{P}[\mathbf{Y} = 1 | \hat{f}(\mathbf{Z})] \text{ almost surely}, \mathbf{X} \sim \text{Bern}(\hat{f}(\mathbf{Z})).$

Hypothesis formulation (classification): For joint distribution $\mathscr{L}_n(\mathbf{Y}, \text{Bern}(f(\mathbf{Z})))$, test the null hypothesis of calibration:

Equivalently,

We are interested in the hypothesis

$H_0: \hat{f}(\mathbf{Z}) = \mathbb{P}[\mathbf{Y} = 1 \mid \hat{f}(\mathbf{Z})] \text{ almost surely }.$

$H_0: \mathbb{P}[\mathbf{X} = 1 | \hat{f}(\mathbf{Z})] = \mathbb{P}[\mathbf{Y} = 1 | \hat{f}(\mathbf{Z})] \text{ almost surely, } \mathbf{X} \sim \text{Bern}(\hat{f}(\mathbf{Z})).$

$H_0: \mathbf{X} | \mathbf{W} \stackrel{d}{=} \mathbf{Y} | \mathbf{W}$

Hypothesis formulation (classification): For joint distribution $\mathscr{L}_n(\mathbf{Y}, \text{Bern}(f(\mathbf{Z})))$, test the null hypothesis of calibration:

Equivalently,

We are interested in the hypothesis

$H_0: \hat{f}(\mathbf{Z}) = \mathbb{P}[\mathbf{Y} = 1 \mid \hat{f}(\mathbf{Z})] \text{ almost surely }.$

$H_0: \mathbb{P}[\mathbf{X} = 1 | \hat{f}(\mathbf{Z})] = \mathbb{P}[\mathbf{Y} = 1 | \hat{f}(\mathbf{Z})] \text{ almost surely, } \mathbf{X} \sim \text{Bern}(\hat{f}(\mathbf{Z})).$

$H_0: \mathbf{X} | \mathbf{W} \stackrel{d}{=} \mathbf{Y} | \mathbf{W}$

 $\mathbf{W} = \hat{f}(\mathbf{Z})$ in calibration test

Regression curve comparison: Consider two regression models $X = f(\mathbf{W}) + \varepsilon, Y = g(\mathbf{W}) + \eta$. $H_0: f = g \Leftrightarrow H_0: \mathbf{X} | \mathbf{W} \stackrel{d}{=} \mathbf{Y} | \mathbf{W}$.

Regression curve comparison: Consider two regression models $X = f(\mathbf{W}) + \varepsilon, Y = g(\mathbf{W}) + \eta, H_0: f = g \Leftrightarrow H_0: \mathbf{X} | \mathbf{W} \stackrel{d}{=} \mathbf{Y} | \mathbf{W}.$

(Dette et. al. 1998, AoS; Neumeyer et. al. 2003, AoS)

Regression curve comparison: Consider two regression models $X = f(\mathbf{W}) + \varepsilon, Y = g(\mathbf{W}) + \eta. H_0: f = g \Leftrightarrow H_0: \mathbf{X} | \mathbf{W} \stackrel{d}{=} \mathbf{Y} | \mathbf{W}.$

(Dette et. al. 1998, AoS; Neumeyer et. al. 2003, AoS)

Conditional goodness-of-fit test: Given a conditional distribution $f(x \mid w)$, we are interested in if the observed data $(Y_i, W_i), i = 1, ..., n$ fit the distribution well or not. H_0 : $\mathbf{X} | \mathbf{W} \stackrel{d}{=} \mathbf{Y} | \mathbf{W}$

Regression curve comparison: Consider two regression models $X = f(\mathbf{W}) + \varepsilon, Y = g(\mathbf{W}) + \eta. H_0: f = g \Leftrightarrow H_0: \mathbf{X} | \mathbf{W} \stackrel{d}{=} \mathbf{Y} | \mathbf{W}.$

(Dette et. al. 1998, AoS; Neumeyer et. al. 2003, AoS)

Conditional goodness-of-fit test: Given a conditional distribution $f(x \mid w)$, we are interested in if the observed data $(Y_i, W_i), i = 1, ..., n$ fit the distribution well or not. H_0 : $\mathbf{X} | \mathbf{W} \stackrel{d}{=} \mathbf{Y} | \mathbf{W}$

(Andrews 1997, Econometrica, Zheng 2000, Econometric Theory)

Regression curve comparison: Consider two regression models $X = f(\mathbf{W}) + \varepsilon, Y = g(\mathbf{W}) + \eta. H_0: f = g \Leftrightarrow H_0: \mathbf{X} | \mathbf{W} \stackrel{d}{=} \mathbf{Y} | \mathbf{W}.$

(Dette et. al. 1998, AoS; Neumeyer et. al. 2003, AoS)

or not. H_0 : $\mathbf{X} | \mathbf{W} \stackrel{d}{=} \mathbf{Y} | \mathbf{W}$

(Andrews 1997, Econometrica, Zheng 2000, Econometric Theory)

Calibration test:

Conditional goodness-of-fit test: Given a conditional distribution $f(x \mid w)$, we are interested in if the observed data $(Y_i, W_i), i = 1, ..., n$ fit the distribution well

Regression curve comparison: Consider two regression models $X = f(\mathbf{W}) + \varepsilon, Y = g(\mathbf{W}) + \eta. H_0: f = g \Leftrightarrow H_0: \mathbf{X} | \mathbf{W} \stackrel{d}{=} \mathbf{Y} | \mathbf{W}.$

(Dette et. al. 1998, AoS; Neumeyer et. al. 2003, AoS)

or not. H_0 : $\mathbf{X} | \mathbf{W} \stackrel{d}{=} \mathbf{Y} | \mathbf{W}$

(Andrews 1997, Econometrica, Zheng 2000, Econometric Theory)

Calibration test:

Conditional goodness-of-fit test: Given a conditional distribution $f(x \mid w)$, we are interested in if the observed data $(Y_i, W_i), i = 1, ..., n$ fit the distribution well

(Widmann et. al. 2019, NeurIPS; Widmann et. al. 2021, ICLR) SKCE method

One-sample v.s. two-sample statistics

7

One-sample v.s. two-sample statistics

One-sample statistics with $(Y_i, W_i)_{i=1}^n$, e.g. **SKCE**:

One-sample v.s. two-sample statistics

One-sample statistics with $(Y_i, W_i)_{i=1}^n$, e.g. **SKCE**:

 $nT_{\text{SKCE}} \stackrel{H_0}{\to} \sum_{k=1}^{\infty} \lambda_m(Z_k^2 - 1), \ Z_k \stackrel{iid}{\sim} N(0, 1)$

One-sample v.s. two-sample statistics One-sample statistics with $(Y_i, W_i)_{i=1}^n$, e.g. SKCE:

$$nT_{\text{SKCE}} \stackrel{H_0}{\to} \sum_{m=1}^{\infty} \lambda_m$$

Two-sample statistics with $(X_i, Y_i, W_i)_{i=1}^n$, $X_i \sim \mathbb{P}_{Y_i|W_i}$, e.g. ECMMD:

 $_{m}(Z_{k}^{2}-1), Z_{k} \stackrel{iid}{\sim} N(0,1)$

One-sample v.s. two-sample statistics One-sample statistics with $(Y_i, W_i)_{i=1}^n$, e.g. SKCE:

$$nT_{\text{SKCE}} \xrightarrow{H_0} \sum_{m=1}^{\infty} \lambda_m (Z_k^2 - 1), \ Z_k \xrightarrow{iid} N(0, 1)$$

Two-sample statistics with $(X_i, Y_i, W_i)_{i=1}^n$, $X_i \sim \mathbb{P}_{Y_i|W_i}$, e.g. ECMMD:

$a_n \frac{T_{\text{ECMMD}}}{\hat{\sigma}_n} \stackrel{H_0}{\to} N(0,1)$

One-sample v.s. two-sample statistics One-sample statistics with $(Y_i, W_i)_{i=1}^n$, e.g. **SKCE**:

$$nT_{\text{SKCE}} \xrightarrow{H_0} \sum_{m=1}^{\infty} \lambda_m (Z_k^2 - 1), \ Z_k \xrightarrow{iid} N(0, 1)$$

Two-sample statistics with $(X_i, Y_i, W_i)_{i=1}^n$, $X_i \sim \mathbb{P}_{Y_i|W_i}$, e.g. ECMMD:

Intractable distribution $\sum \lambda$

$$\sum_{m=1}^{\infty} \lambda_m (Z_k^2 - m)$$

$a_n \frac{T_{\text{ECMMD}}}{\hat{\sigma}_n} \stackrel{H_0}{\to} N(0,1)$

- 1) versus "nice" distribution N(0,1).

Challenge: Type-I error under null
Type-I error inflation/deflation: degedistribution.

Kernel and RKHS: $K(x, y) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}, \mathcal{H}_{K}$.

Kernel and RKHS: $K(x, y) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}, \mathcal{H}_{K}$.

Any positive semidefinite kernel is associated with a unique Hilbert space \mathcal{H}_{K} satisfying:

Kernel and RKHS: $K(x, y) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}, \mathcal{H}_{K}$.

Any positive semidefinite kernel is associated with a unique Hilbert space \mathcal{H}_{K} satisfying:1

Kernel and RKHS: $K(x, y) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}, \mathcal{H}_{K}$.

satisfying¹

Any positive semidefinite kernel is associated with a unique Hilbert space \mathcal{H}_{K}

(1) $K(\cdot, x) \in \mathcal{H}_{K};$

Kernel and RKHS: $K(x, y) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}, \mathcal{H}_{K}$.

satisfying¹

Any positive semidefinite kernel is associated with a unique Hilbert space \mathcal{H}_{K}

(1) $K(\cdot, x) \in \mathcal{H}_{K};$

(2) $\langle f(\cdot), K(\cdot, x) \rangle_{\mathcal{H}_K} = f(x), \forall f \in \mathcal{H}_K.$

Kernel and RKHS: $K(x, y) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}, \mathcal{H}_{K}$.

satisfying¹

Kernel mean embedding: $\mu_{\mathbb{P}}$ satisfying $\langle \mu_{\mathbb{P}}, f \rangle_{\mathcal{H}_{K}} = \mathbb{E}_{X \sim \mathbb{P}}[f(X)], \forall f \in \mathcal{H}_{K}$.

Any positive semidefinite kernel is associated with a unique Hilbert space \mathscr{H}_{K}

(1) $K(\cdot, x) \in \mathcal{H}_{K};$

(2) $\langle f(\cdot), K(\cdot, x) \rangle_{\mathcal{H}_{K}} = f(x), \forall f \in \mathcal{H}_{K}.$

Kernel and RKHS: $K(x, y) : \mathbb{R} \times \mathbb{R} \mapsto$

satisfying¹

$$\rightarrow \mathbb{R}, \mathcal{H}_{K}.$$

Any positive semidefinite kernel is associated with a unique Hilbert space \mathcal{H}_{K}

(1) $K(\cdot, x) \in \mathcal{H}_{K};$

(2) $\langle f(\cdot), K(\cdot, x) \rangle_{\mathcal{H}_{K}} = f(x), \forall f \in \mathcal{H}_{K}.$

Kernel mean embedding: $\mu_{\mathbb{P}}$ satisfying $\langle \mu_{\mathbb{P}}, f \rangle_{\mathcal{H}_{K}} = \mathbb{E}_{X \sim \mathbb{P}}[f(X)], \forall f \in \mathcal{H}_{K}.$

Linear kernel: $K(x, y) = x \cdot y$ and $\mu_{\mathbb{P}}(y) = \mathbb{E}_{X \sim \mathbb{P}}[K(X, y)] = \mathbb{E}_{X \sim \mathbb{P}}[X] \cdot y$.

Maximum mean discrepancy (MMD, Gretton et al. 2012):

Maximum mean discrepancy (MMD, Gretton et al. 2012):

$\mathrm{MMD}^{2}(\mathbf{X},\mathbf{Y}) \equiv \|\mu_{\mathbb{P}_{\mathbf{X}}} - \mu_{\mathbb{P}_{\mathbf{Y}}}\|_{\mathscr{H}_{K}}^{2} = (\mathbb{E}_{X \sim \mathbb{P}_{\mathbf{X}}}[X] - \mathbb{E}_{Y \sim \mathbb{P}_{\mathbf{Y}}}[Y])^{2}$

Maximum mean discrepancy (MMD, Gretton et al. 2012):

$$\mathrm{MMD}^2(\mathbf{X}, \mathbf{Y}) \equiv \|\mu_{\mathbb{P}_{\mathbf{X}}} - \mu$$

- $\iota_{\mathbb{P}_{\mathbf{Y}}}\|_{\mathscr{H}_{K}}^{2} = (\mathbb{E}_{X \sim \mathbb{P}_{\mathbf{Y}}}[X] \mathbb{E}_{Y \sim \mathbb{P}_{\mathbf{Y}}}[Y])^{2}$

Maximum mean discrepancy (MMD, Gretton et al. 2012):

$$\mathrm{MMD}^2(\mathbf{X}, \mathbf{Y}) \equiv \|\mu_{\mathbb{P}_{\mathbf{X}}} - \mu\|$$

- $\iota_{\mathbb{P}_{\mathbf{V}}}\|_{\mathscr{H}_{K}}^{2} = (\mathbb{E}_{X \sim \mathbb{P}_{\mathbf{V}}}[X] \mathbb{E}_{Y \sim \mathbb{P}_{\mathbf{V}}}[Y])^{2}$
- $\mathbb{E}CMMD^{2}(\mathbf{X}, \mathbf{Y} | \mathbf{W}) \equiv \mathbb{E}_{\mathbf{W}}[MMD^{2}(\mathbf{X} | \mathbf{W}, \mathbf{Y} | \mathbf{W})] = \mathbb{E}_{\mathbf{W}}[(\mathbb{E}[\mathbf{X} | \mathbf{W}] \mathbb{E}[(\mathbf{Y} | \mathbf{W}])^{2}]$

Maximum mean discrepancy (MMD, Gretton et al. 2012):

$$\mathrm{MMD}^2(\mathbf{X}, \mathbf{Y}) \equiv \|\mu_{\mathbb{P}_{\mathbf{X}}} - \mu\|$$

- $\iota_{\mathbb{P}_{\mathbf{V}}}\|_{\mathscr{H}_{\mathcal{V}}}^{2} = (\mathbb{E}_{X \sim \mathbb{P}_{\mathbf{V}}}[X] \mathbb{E}_{Y \sim \mathbb{P}_{\mathbf{V}}}[Y])^{2}$
- $\mathbb{E}CMMD^{2}(\mathbf{X}, \mathbf{Y} | \mathbf{W}) \equiv \mathbb{E}_{\mathbf{W}}[MMD^{2}(\mathbf{X} | \mathbf{W}, \mathbf{Y} | \mathbf{W})] = \mathbb{E}_{\mathbf{W}}[(\mathbb{E}[\mathbf{X} | \mathbf{W}] \mathbb{E}[(\mathbf{Y} | \mathbf{W}])^{2}]$
- Linear kernel $K(x, y) = x \cdot y$ is characteristic with binary outcome X, Y:

Maximum mean discrepancy (MMD, Gretton et al. 2012):

$$\mathrm{MMD}^2(\mathbf{X}, \mathbf{Y}) \equiv \|\mu_{\mathbb{P}_{\mathbf{X}}} - \mu\|$$

- $\iota_{\mathbb{P}_{\mathbf{V}}}\|_{\mathscr{H}_{K}}^{2} = (\mathbb{E}_{X \sim \mathbb{P}_{\mathbf{V}}}[X] \mathbb{E}_{Y \sim \mathbb{P}_{\mathbf{V}}}[Y])^{2}$
- $\mathbb{E}CMMD^{2}(\mathbf{X}, \mathbf{Y} \mid \mathbf{W}) \equiv \mathbb{E}_{\mathbf{W}}[MMD^{2}(\mathbf{X} \mid \mathbf{W}, \mathbf{Y} \mid \mathbf{W})] = \mathbb{E}_{\mathbf{W}}[(\mathbb{E}[\mathbf{X} \mid \mathbf{W}] \mathbb{E}[(\mathbf{Y} \mid \mathbf{W}])^{2}]$
- Linear kernel $K(x, y) = x \cdot y$ is characteristic with binary outcome X, Y:
 - $ECMMD^2 = 0$ if and only if $X | W \stackrel{d}{=} Y | W$.

Maximum mean discrepancy (MMD, Gretton et al. 2012):

$$\mathrm{MMD}^2(\mathbf{X}, \mathbf{Y}) \equiv \|\mu_{\mathbb{P}_{\mathbf{X}}} - \mu\|$$

- $\iota_{\mathbb{P}_{\mathbf{V}}}\|_{\mathscr{H}_{\mathcal{V}}}^{2} = (\mathbb{E}_{X \sim \mathbb{P}_{\mathbf{V}}}[X] \mathbb{E}_{Y \sim \mathbb{P}_{\mathbf{V}}}[Y])^{2}$
- $\mathrm{ECMMD}^{2}(\mathbf{X}, \mathbf{Y} | \mathbf{W}) \equiv \mathbb{E}_{\mathbf{W}}[\mathrm{MMD}^{2}(\mathbf{X} | \mathbf{W}, \mathbf{Y} | \mathbf{W})] = \mathbb{E}_{\mathbf{W}}[(\mathbb{E}[\mathbf{X} | \mathbf{W}] \mathbb{E}[(\mathbf{Y} | \mathbf{W}])^{2}]$
- Linear kernel $K(x, y) = x \cdot y$ is characteristic with binary outcome X, Y:
 - $ECMMD^2 = 0$ if and only if $X | W \stackrel{d}{=} Y | W$.
 - $ECMMD^2 = 0$ if and only if H_0 is true.

Plug-in estimation is biased even under null: with any nonparametric estimator for $\mathbb{E}[\mathbf{X} | \mathbf{W}]$ and $\mathbb{E}[\mathbf{Y} | \mathbf{W}]$, e.g. KNN or kernel regression estimator, the resulting estimate is not \sqrt{n} unbiased:

Plug-in estimation is biased even under null: with any nonparametric estimator for $\mathbb{E}[\mathbf{X} | \mathbf{W}]$ and $\mathbb{E}[\mathbf{Y} | \mathbf{W}]$, e.g. KNN or kernel regression estimator, the resulting estimate is not \sqrt{n} unbiased:

$$\sqrt{n} \left(\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbb{E}}[X_i | W_i] - \hat{\mathbb{E}}[Y_i | W_i])^2 \right] - \text{ECMMD}^2 \right) \xrightarrow{H_0} \infty$$

Plug-in estimation is biased even under null: with any nonparametric estimator for $\mathbb{E}[X | W]$ and $\mathbb{E}[Y | W]$, e.g. KNN or kernel regression estimator, the resulting estimate is not \sqrt{n} unbiased:

$$\sqrt{n} \left(\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbb{E}}[X_i | W_i] - \frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbb{E}}[X_i | W_i]) \right] \right) \right)$$

 $\hat{\mathbb{E}}[Y_i | W_i])^2 - \text{ECMMD}^2 \xrightarrow{H_0} \infty$ An alternative form of ECMMD: $W \sim \mathbb{P}_W$, $(X,Y), (X',Y') \stackrel{i.i.d.}{\sim} \mathbb{P}_{(X,Y)|W}$

Plug-in estimation is biased even under null: with any nonparametric estimator for $\mathbb{E}[X | W]$ and $\mathbb{E}[Y | W]$, e.g. KNN or kernel regression estimator, the resulting estimate is not \sqrt{n} unbiased:

$$\sqrt{n} \left(\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbb{E}}[X_i | W_i] - \frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbb{E}}[X_i | W_i]) - \frac{1}{n} \right] \right) \right)$$

 $-\hat{\mathbb{E}}[Y_i | W_i])^2 - \text{ECMMD}^2 \xrightarrow{H_0} \infty$ An alternative form of ECMMD: $W \sim \mathbb{P}_W$, $(X,Y), (X',Y') \stackrel{i.i.d.}{\sim} \mathbb{P}_{(X,Y)|W}$ $H((x, y), (x', y')) \equiv xx' + yy' - xy' - x'y$

Plug-in estimation is biased even under null: with any nonparametric estimator for $\mathbb{E}[X | W]$ and $\mathbb{E}[Y | W]$, e.g. KNN or kernel regression estimator, the resulting estimate is not \sqrt{n} unbiased:

$$\sqrt{n} \left(\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbb{E}}[X_i | W_i] - \frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbb{E}}[X_i | W_i]) - \frac{1}{n} \right] \right) \right)$$

 $-\hat{\mathbb{E}}[Y_i | W_i])^2 - \text{ECMMD}^2 \xrightarrow{H_0} \infty$ An alternative form of ECMMD: $W \sim \mathbb{P}_W$, $(X,Y), (X',Y') \stackrel{i.i.d.}{\sim} \mathbb{P}_{(X,Y)|W}$ $H((x, y), (x', y')) \equiv xx' + yy' - xy' - x'y$ $\mathrm{ECMMD}^2 = \mathbb{E}_{\mathbf{W}}[(\mathbb{E}[\mathbf{X} - \mathbf{Y} | \mathbf{W}])^2] = \mathbb{E}_{\mathbf{W}}[\mathbb{E}[H((\mathbf{X}, \mathbf{Y}), (\mathbf{X}', \mathbf{Y}')) | \mathbf{W}]]$

(W_1, \ldots, W_n) . $\mathcal{N}(i)$ is the k_n nearest neighbors set of \mathbf{W}_i .

Nearest neighbor replacement: generate k_n nearest neighbor graph with data

(W_1, \ldots, W_n) . $\mathcal{N}(i)$ is the k_n nearest neighbors set of \mathbf{W}_i .

Nearest neighbor replacement: generate k_n nearest neighbor graph with data

 $\mathbb{E}[H((\mathbf{X}, \mathbf{Y}), (\mathbf{X}', \mathbf{Y}')) | \mathbf{W}_i] \approx \frac{1}{k_n} \sum_{i \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$

 (W_1, \ldots, W_n) . $\mathcal{N}(i)$ is the k_n nearest neighbors set of \mathbf{W}_i .

 $\mathbb{E}_{\mathbf{W}_{i}}[\mathbb{E}[H((\mathbf{X},\mathbf{Y}),(\mathbf{X}',\mathbf{Y}')) | \mathbf{W}_{i}]$

Nearest neighbor replacement: generate k_n nearest neighbor graph with data

$$[H] \approx \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((X_i, Y_i), (X_j, Y_j))$$
(W_1, \ldots, W_n) . $\mathcal{N}(i)$ is the k_n nearest neighbors set of \mathbf{W}_i .

$\mathbb{E}_{\mathbf{W}_i}[\mathbb{E}[H((\mathbf{X},\mathbf{Y}),(\mathbf{X}',\mathbf{Y}')) | \mathbf{W}_i]$

Intuition behind the estimator: $k_n = 1$, n = 9.

$$[P]] \approx \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((X_i, Y_i), (X_j, Y_j))$$

 (W_1, \ldots, W_n) . $\mathcal{N}(i)$ is the k_n nearest neighbors set of \mathbf{W}_i .

$\mathbb{E}_{\mathbf{W}_{i}}[\mathbb{E}[H((\mathbf{X},\mathbf{Y}),(\mathbf{X}',\mathbf{Y}')) | \mathbf{W}_{i}]$

Intuition behind the estimator: $k_n = 1$, n = 9.

 $W_1, ..., W_9$

$$[P]] \approx \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((X_i, Y_i), (X_j, Y_j))$$

 (W_1, \ldots, W_n) . $\mathcal{N}(i)$ is the k_n nearest neighbors set of W_i .

$\mathbb{E}_{\mathbf{W}_i}[\mathbb{E}[H((\mathbf{X},\mathbf{Y}),(\mathbf{X}',\mathbf{Y}')) | \mathbf{W}_i]$

Intuition behind the estimator: $k_n = 1$, n = 9.

$$[1] \approx \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((X_i, Y_i), (X_j, Y_j))$$

 (W_1, \ldots, W_n) . $\mathcal{N}(i)$ is the k_n nearest neighbors set of \mathbf{W}_i .

$\mathbb{E}_{\mathbf{W}_i}[\mathbb{E}[H((\mathbf{X},\mathbf{Y}),(\mathbf{X}',\mathbf{Y}')) | \mathbf{W}_i]$

Intuition behind the estimator: $k_n = 1$, n = 9.

$$]] \approx \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((X_i, Y_i), (X_j, Y_j))$$

 (W_1, \ldots, W_n) . $\mathcal{N}(i)$ is the k_n nearest neighbors set of \mathbf{W}_i .

$\mathbb{E}_{\mathbf{W}_i}[\mathbb{E}[H((\mathbf{X},\mathbf{Y}),(\mathbf{X}',\mathbf{Y}')) | \mathbf{W}_i]$

Intuition behind the estimator: $k_n = 1$, n = 9.

$$]] \approx \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((X_i, Y_i), (X_j, Y_j))$$

Theorem (informal):

Theorem (informal):

• Under H_0 , $\mathbb{E}[T] = 0$.

Theorem (informal):

$T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{i \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$

• Under H_0 , $\mathbb{E}[T] = 0$. • Under mild conditions, $T \xrightarrow{\mathbb{P}} \text{ECMMD}^2(\mathbf{X}, \mathbf{Y} | \mathbf{W})$ if $k_n = o(n/\log(n))$.

 $T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$

Theorem (informal): Under H_0 , we have

 $T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$

Theorem (informal): Under H_0 , we have $\frac{\sqrt{nk_nT}}{\hat{z}} \to N(0,1), \text{ if } k_n = o(n^{\delta}) \text{ for some small } \delta > 0.$

 $T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{i \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$

 $T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{i \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$

Theorem (informal): Under H_0 , we have $\frac{\sqrt{nk_nT}}{\hat{\gamma}} \to N(0,1), \text{ if } k_n = o(n^{\delta}) \text{ for some small } \delta > 0.$

where $\hat{\sigma}_n^2$ is a variance estimate.

Highly non-trivial proof:

 $T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{i \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$

Theorem (informal): Under H_0 , we have $\frac{\sqrt{nk_nT}}{\hat{\gamma}} \to N(0,1), \text{ if } k_n = o(n^{\delta}) \text{ for some small } \delta > 0.$

where $\hat{\sigma}_n^2$ is a variance estimate.

Highly non-trivial proof:

 $T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{i \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$

Stein's method for dependency graph + dedicate analysis on $\hat{\sigma}_n!$

A consistent test:

A consistent test:

 $\phi \equiv \mathbf{1}\{|\sqrt{nk_n}T/\hat{\sigma}_n| \ge z_{1-\alpha/2}\}, \lim \sup_{n \to \infty} \mathbb{E}_{H_0}[\phi] \le \alpha, \lim \inf_{n \to \infty} \mathbb{E}_{H_1}[\phi] = 1$ $n \rightarrow \infty$

A consistent test:

$$\phi \equiv \mathbf{1} \{ |\sqrt{nk_n}T/\hat{\sigma}_n| \ge z_{1-\alpha/2} \}, \text{ li}$$

Computation efficiency: linear comp time in *n* if k_n is a constant

- $\limsup_{n \to \infty} \mathbb{E}_{H_0}[\phi] \le \alpha, \liminf_{n \to \infty} \mathbb{E}_{H_1}[\phi] = 1$ $n \rightarrow \infty$

A consistent test:

$$\phi \equiv \mathbf{1} \{ |\sqrt{nk_n}T/\hat{\sigma}_n| \ge z_{1-\alpha/2} \}, \text{ li}$$

Computation efficiency: linear comp time in *n* if k_n is a constant **Easy calibration:** no need to do resampling

- $\limsup_{n \to \infty} \mathbb{E}_{H_0}[\phi] \le \alpha, \liminf_{n \to \infty} \mathbb{E}_{H_1}[\phi] = 1$ $n \rightarrow \infty$

A consistent test:

$$\phi \equiv \mathbf{1} \{ |\sqrt{nk_n}T/\hat{\sigma}_n| \ge z_{1-\alpha/2} \}, \text{ li}$$

Computation efficiency: linear comp time in n if k_n is a constant **Easy calibration:** no need to do resampling

Agnostic to hyperparameter: no rate lower bound on k_n

- $\limsup_{n \to \infty} \mathbb{E}_{H_0}[\phi] \le \alpha, \liminf_{n \to \infty} \mathbb{E}_{H_1}[\phi] = 1$ $n \rightarrow \infty$

A consistent test:

$$\phi \equiv \mathbf{1} \{ |\sqrt{nk_n}T/\hat{\sigma}_n| \ge z_{1-\alpha/2} \}, \text{ li}$$

Computation efficiency: linear comp time in n if k_n is a constant

Easy calibration: no need to do resampling

Agnostic to hyperparameter: no rate lower bound on k_n

- $\limsup_{n \to \infty} \mathbb{E}_{H_0}[\phi] \le \alpha, \liminf_{n \to \infty} \mathbb{E}_{H_1}[\phi] = 1$ $n \rightarrow \infty$

This is not the end of the story!

Recall the ECMMD test statistic construction:

Recall the ECMMD test statistic construction:

• Given $(Y_1, W_1), \ldots, (Y_n, W_n)$ and predictive distribution $\text{Bern}(\hat{f}(\mathbf{Z}))$;

- **Recall the ECMMD test statistic construction:**
- Given $(Y_1, W_1), \ldots, (Y_n, W_n)$ and predictive distribution $\text{Bern}(\hat{f}(\mathbf{Z}))$;
- Sample $(X_i, W_i) \sim \text{Bern}(W_i), W_i = \hat{f}(Z_i);$

- **Recall the ECMMD test statistic construction:**
- Given $(Y_1, W_1), \ldots, (Y_n, W_n)$ and predictive distribution $\text{Bern}(\hat{f}(\mathbf{Z}))$;
- Sample $(X_i, W_i) \sim \text{Bern}(W_i), W_i = \hat{f}(Z_i);$
- Compute the test statistic T with $(X_1, Y_1, W_1), \ldots, (X_n, Y_n, W_n)$ and standard deviation estimate $\hat{\sigma}_n$.

- **Recall the ECMMD test statistic construction:**
- Given $(Y_1, W_1), \ldots, (Y_n, W_n)$ and predictive distribution $\text{Bern}(\hat{f}(\mathbf{Z}))$;
- Sample $(X_i, W_i) \sim \text{Bern}(W_i), W_i = \hat{f}(Z_i);$
- Compute the test statistic T with $(X_1, Y_1, W_1), \ldots, (X_n, Y_n, W_n)$ and standard deviation estimate $\hat{\sigma}_n$.

Sampling $X_i \sim \mathbb{P}_{\mathbf{X}_i | \mathbf{W}_i}$ will induce a random test!

Reduce randomness with derandomized test

Reduce randomness with derandomized test

1. Given (Y_i, W_i) , i = 1, ..., n. Construct the nearest neighbor graph using $W_1, ..., W_n$;

- 1. Given (Y_i, W_i) , i = 1, ..., n. Construct the nearest neighbor graph using $W_1, ..., W_n$;
- 2. Get M_n samples $(\widetilde{X}_i^{(1)}, W_i)_{i=1,...,n}$

$$_{n}, \ldots, (\widetilde{X}_{i}^{(M_{n})}, W_{i})_{i=1,\ldots,n} \text{ from } \mathbb{P}_{X_{i}|W_{i}}$$

1. Given (Y_i, W_i) , i = 1, ..., n. Construct the nearest neighbor graph using $W_1, ..., W_n$;

Get 2.

$$T^{(m)} \equiv \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)}^{(1)} H((Y_i, \widetilde{X}_i^{(m)}), (Y_j, \widetilde{X}_j^{(m)})), \widetilde{T} = \frac{1}{M_n} \sum_{m=1}^{M_n} T^{(m)};$$

1. Given (Y_i, W_i) , i = 1, ..., n. Construct the nearest neighbor graph using $W_1, ..., W_n$;

Get 2.

$$T^{(m)} \equiv \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((Y_i, \widetilde{X}_i^{(m)}), (Y_j, \widetilde{X}_j^{(m)})), \widetilde{T} = \frac{1}{M_n} \sum_{m=1}^{M_n} T^{(m)};$$

urn the test statistic $\widetilde{T}/\widetilde{\sigma}$ with standard deviation estimate $\widetilde{\sigma}$;

3. Retur

- 1. Given (Y_i, W_i) , i = 1, ..., n. Construct the nearest neighbor graph using $W_1, ..., W_n$;
- Get 2.

$$T^{(m)} \equiv \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((Y_i, \widetilde{X}_i^{(m)}), (Y_j, \widetilde{X}_j^{(m)})), \widetilde{T} = \frac{1}{M_n} \sum_{m=1}^{M_n} T^{(m)};$$

3. Return the test statistic I/σ with standard deviation estimate σ ;

- **1.** Given (Y_i, W_i) , i = 1, ..., n. Construct the nearest neighbor graph using $W_1, ..., W_n$;
- Get 2

$$T^{(m)} \equiv \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)}^{(1)} H((Y_i, \widetilde{X}_i^{(m)}), (Y_j, \widetilde{X}_j^{(m)})), \widetilde{T} = \frac{1}{M_n} \sum_{m=1}^{M_n} T^{(m)};$$

$$T^{(m)} \equiv \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)}^{(i)} H((Y_i, \widetilde{X}_i^{(m)}), (Y_j, \widetilde{X}_j^{(m)})), \widetilde{T} = \frac{1}{M_n} \sum_{m=1}^{M_n} T^{(m)};$$

$$T^{(m)} = \frac{1}{N_n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)}^{(i)} H((Y_i, \widetilde{X}_i^{(m)}), (Y_j, \widetilde{X}_j^{(m)})), \widetilde{T} = \frac{1}{M_n} \sum_{m=1}^{M_n} T^{(m)};$$

$$T^{(m)} = \frac{1}{N_n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)}^{(i)} H((Y_i, \widetilde{X}_i^{(m)}), (Y_j, \widetilde{X}_j^{(m)})), \widetilde{T} = \frac{1}{M_n} \sum_{m=1}^{M_n} T^{(m)};$$

$$T^{(m)} = \frac{1}{N_n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)}^{(i)} H((Y_i, \widetilde{X}_i^{(m)}), (Y_j, \widetilde{X}_j^{(m)})),$$

3. Retu

Theorem (informal): Under H_0 , as long as $M_n \to \infty$ at any rate we have

- 1. Given (Y_i, W_i) , i = 1, ..., n. Construct the nearest neighbor graph using $W_1, ..., W_n$;
- 2. Get

$$T^{(m)} \equiv \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)}^{(1)} H((Y_i, \widetilde{X}_i^{(m)}), (Y_j, \widetilde{X}_j^{(m)})), \widetilde{T} = \frac{1}{M_n} \sum_{m=1}^{M_n} T^{(m)};$$

3. Return the test statistic $\widetilde{T}/\widetilde{\sigma}$ with standard deviation estimate $\widetilde{\sigma}$;

Theorem (informal): Under H_0 , as long as $M_n \to \infty$ at any rate we have

 $\sqrt{nk_n}\tilde{T}/\tilde{\sigma}_n \to N(0,1)$, if $k_n = o(n^{\delta})$ for some small $\delta > 0$.

Classification calibration

Classification calibration

 $(W_i, 1 - W_i) \stackrel{iid}{\sim} \text{Dirichlet}(\rho), \rho \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$

Classification calibration

 $(W_i, 1 - W_i) \stackrel{iid}{\sim} \text{Dirichlet}(\rho), \rho \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$ $n = 100, k_n \in \{15, 25\}, M_n = 100$

Classification calibration

 $(W_i, 1 - W_i) \stackrel{iid}{\sim} \text{Dirichlet}(\rho), \rho \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$ $n = 100, k_n \in \{15, 25\}, M_n = 100$ Null

Classification calibration

- $(W_i, 1 W_i) \stackrel{iid}{\sim} \text{Dirichlet}(\rho), \rho \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$ $n = 100, k_n \in \{15, 25\}, M_n = 100$ Null
- $Y_i \sim \text{Bern}(W_i), X_i \sim \text{Bern}(W_i)$

Classification calibration

 $(W_i, 1 - W_i) \stackrel{iid}{\sim} \text{Dirichlet}(\rho), \rho \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$ $n = 100, k_n \in \{15, 25\}, M_n = 100$ Null

 $Y_i \sim \text{Bern}(W_i), X_i \sim \text{Bern}(W_i)$ **Alternative**

Classification calibration

- $(W_i, 1 W_i) \stackrel{iid}{\sim} \text{Dirichlet}(\rho), \rho \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$ $n = 100, k_n \in \{15, 25\}, M_n = 100$ Null
- $Y_i \sim \text{Bern}(W_i), X_i \sim \text{Bern}(W_i)$

Alternative

 $Y_i \sim \text{Bern}(W_i - W_i^5), X_i \sim \text{Bern}(W_i)$

Calibration test for classification model with n = 1000.08 0.07 -Type I Error 90'0 0.05 -0.04 -0.5 0.2 0.1 0.3 0.4 ρ

Calibration test for classification model with n = 1000.08 0.07 -Type I Error 0.05 0.04 -0.5 0.2 0.1 0.4 0.3 ρ

Calibration test for classification model with n = 100

Calibration test for classification model with n = 1000.08 0.07 -Type I Error 0.06 0.05 0.04 -0.5 0.2 0.1 0.3 0.4 ρ

Calibration test for classification model with n = 1001.00 -0.75 -Power 0.50 0.25 -0.1 0.2 0.4 0.3 0.5 ρ 15 NN (asymp) 25 NN (asymp)

Take-home messages:

Take-home messages:

 Formulate the model calibration test to a conditional two-sample problem and bridge the classical inference literature with calibration problem;

Take-home messages:

- Formulate the model calibration test to a conditional two-sample problem and bridge the classical inference literature with calibration problem;
- Nearest neighbor-based test has statistical and computational advantages;

Take-home messages:

- Formulate the model calibration test to a conditional two-sample problem and bridge the classical inference literature with calibration problem;
- Nearest neighbor-based test has statistical and computational advantages;
- Derandomization is beneficial for the power of the test;

Take-home messages:

- Formulate the model calibration test to a conditional two-sample problem and bridge the classical inference literature with calibration problem;
- Nearest neighbor-based test has statistical and computational advantages;
- Derandomization is beneficial for the power of the test;

Open questions:

Take-home messages:

- Formulate the model calibration test to a conditional two-sample problem and bridge the classical inference literature with calibration problem;
- Nearest neighbor-based test has statistical and computational advantages;
- Derandomization is beneficial for the power of the test;

Open questions:

Is the proposed test powerful against local alternatives?

Take-home messages:

- Formulate the model calibration test to a conditional two-sample problem and bridge the classical inference literature with calibration problem;
- Nearest neighbor-based test has statistical and computational advantages;
- Derandomization is beneficial for the power of the test;

Open questions:

- Is the proposed test powerful against local alternatives?
- What if there are multiple candidate models?

Take-home messages:

- Formulate the model calibration test to a conditional two-sample problem and bridge the classical inference literature with calibration problem;
- Nearest neighbor-based test has statistical and computational advantages;
- Derandomization is beneficial for the power of the test;

Open questions:

- Is the proposed test powerful against local alternatives?
- What if there are multiple candidate models?
- High-stakes application with the proposed method?

Thank you! Questions?

