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Statistical task (loose): find out whether a trained supervised model
f: R~ {0,1} can produce “reliable” prediction.

ad

It w = p, it is a reliable prediction at prediction w.
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Statistical formulation

Hypothesis formulation (classification): For joint distribution £ (Y, Bern( f(Z))),
test the null hypothesis of calibration:

H,: f(Z) = P[Y = 1 | f(Z)] aimost surely .

Equivalently,
H,: P[X = 1|fZ)] = P[Y = 1 | f(Z)] almost surely, X ~ Bern(f(Z)).

We are interested in the hypothesis
Hy:X|W2Y|W

W = f(Z) in calibration test
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Relevant literature

Regression curve comparison: Consider two regression models

X=fW)+e,Y=gW)+n.Hy:f=g H,: X|W = Y\W
(Dette et. al. 1998, AoS; Neumeyer et. al. 2003, AoS)

Conditional goodness-of-fit test: Given a conditional distribution f(x | w), we
are interested in if the observed data (Y,, W,),1 = 1,..., n fit the distribution well

ornot. Hy : X|W < Y| W
(Andrews 1997, Econometrica, Zheng 2000, Econometric Theory)

Calibration test:

(Widmann et. al. 2019, NeurlPS; Widmann et. al. 2021, ICLR) SKCE method
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One-sample statistics with (Y;, W,)'_,, e.g. SKCE:

H ud
nTskce = Z /Im(Zk2 — 1), 4 ~

m=1

N(O,1)

Two-sample statistics with (X, Y,, W))'_ , X, ~ | y |w €.9. ECMMD:

lTecMmmD EQ N(0.1)

n A

Oy

d

0
Intractable distribution 2 /lm(Zk2 — 1) versus “nice” distribution N(0,1).

m=1
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RKHS preliminary

Kernel and RKHS: K(x,y) : RXR = R, Z«.

Any positive semidefinite kernel is associated with a unique Hilbert space # K
satisfying:

(1)K( ' ,X) S %[{;
@) SO ), K(- X)) g, = f0), V€ H k.

Kernel mean embedding: yp satisfying (up, f) 5. = Ex plf(X)], Vf € # .

Linear kernel: K(x,y) = x - yand up(y) = by _plK(X,y)] = Ey _plX] - .

Wainwright, 2019
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A characteristic measure for linear kernel

Maximum mean discrepancy (MMD, Gretton et al. 2012):

MMD*(X,Y) = |lup, — pp I3 = (

= x~py X ] —

Expected conditional maximum mean discrepancy (ECMMD):

ECMMD*(X,Y |W) =

= wIMMDA(X |W, Y |W)] =

"W[(

“[ X[ W] -

_YNPY[Y])Z

“[(Y |W])7]

Linear kernel K(x, y) = x - yis characteristic with binary outcome X, Y:

ECMMD2:OifandonlyifX\WgY\W.

ECMMD? = 0 if and only if H, is true.

11



Biased estimation and reformulation of ECMMD



Biased estimation and reformulation of ECMMD

Plug-in estimation is biased even under null: with any nonparametric
estimator for E[X | W] and E[Y | W], e.g. KNN or kernel regression estimator,

the resulting estimate is not \/E unbiased:

12



Biased estimation and reformulation of ECMMD

Plug-in estimation is biased even under null: with any nonparametric
estimator for E[X | W] and E[Y | W], e.g. KNN or kernel regression estimator,

the resulting estimate is not \/E unbiased:

Hy

V/n ( - llz([x,-\ Wil — ELY;| W,-]>2] —ECMMDZ) =
n =1




Biased estimation and reformulation of ECMMD

Plug-in estimation is biased even under null: with any nonparametric
estimator for E[X | W] and E[Y | W], e.g. KNN or kernel regression estimator,

the resulting estimate is not \/E unbiased:

V/n ( - llz([x,-\ Wil — E1Y;| W,-]>2] —ECMMDZ) 2
n =1

An alternative form of ECMMD: W ~ Py, (X,Y), (X, Y’ el (X.Y)|W

12



Biased estimation and reformulation of ECMMD

Plug-in estimation is biased even under null: with any nonparametric
estimator for E[X | W] and E[Y | W], e.g. KNN or kernel regression estimator,

the resulting estimate is not \/E unbiased:

V/n ( - llz([x,-\ Wil — E1Y;| W,-]>2] —ECMMDZ) 2
n =1

An alternative form of ECMMD: W ~ Py, (X,Y), (X, Y’ el (X.Y)|W

H((x,y), x,y)) =xx"+yy' —xy' — X'y

12



Biased estimation and reformulation of ECMMD

Plug-in estimation is biased even under null: with any nonparametric
estimator for E[X | W] and E[Y | W], e.g. KNN or kernel regression estimator,

the resulting estimate is not \/E unbiased:

V/n ( - llz([x,-\ Wil — E1Y;| W,-]>2] —ECMMDZ) 2
n =1

An alternative form of ECMMD: W ~ Py, (X,Y), (X, Y’ el (X.Y)|W

H((x,y), (x,y) =xx'+yy' —xy' —x'y
ECMMD? = Ew[(E[X — Y |W])?] = Ew[E[H((X,Y), (X, Y"))| W]
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Recall

l v« 1
T=—),— 2, HX,Y),(X;Y))

i=1 " jen3)

Theorem (informal):
 Under Hy, E[T] = 0.

« Under mild conditions, T 5 ECMMD*(X, Y | W) if k, = o(n/log(n)) .
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Asymptotic behavior under null

Recall

l v 1
T=—),— 2, HX,Y),(X;Y))
i=1 " jeN

Theorem (informal): Under H,,, we have

\/nk, T

A\

Oy

— N(O,1), if k&, = o(n®) for some small § > 0.

where 62 is a variance estimate.

Highly non-trivial proof:

Stein’s method for dependency graph + dedicate analysis on 6n!
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Property of the test

A consistent test:

¢ = 1{|\/nk,T/6,| 2 z)_ypn}, limsupEy [¢] < a,lim infEy [¢] =1

11— 0O n— Q00

Computation efficiency: linear comp time in n if k, is a constant

Easy calibration: no need to do resampling

Agnostic to hyperparameter: no rate lower bound on kn

This is not the end of the story!
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Recall the ECMMD test statistic construction:
 Given (Y|, W), ..., (Y,, W ) and predictive distribution Bern( f(Z));
» Sample (X, W;) ~ Bern(W,), W, = ]?(Zi);

» Compute the test statistic 7' with (X, Y;, W;),...,(X,Y , W ) and
standard deviation estimate 0,
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What has been ignored?

Recall the ECMMD test statistic construction:

 Given (Y|, W), ..., (Y,, W ) and predictive distribution Bern( AZ));

A\

» Sample (X;, W,) ~ Bern(W)), W, = f(£);

» Compute the test statistic 7' with (X, Y;, W;),...,(X,Y , W ) and
standard deviation estimate 0,

Sampling X; ~ Px w will induce a random test!
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Reduce randomness with derandomized test
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Theorem (informal): Under H,,, as long as M, — oo at any rate we have

\/nknT/'En — N(0,1), if k, = o(n°) for some small § > 0.
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Calibration test for classification model with n =100
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and bridge the classical inference literature with calibration problem;

* Nearest neighbor-based test has statistical and computational advantages;

 Derandomization is beneficial for the power of the test;

Open guestions:
* |s the proposed test powerful against local alternatives?
 What if there are multiple candidate models?

* High-stakes application with the proposed method?

21



22



Thank you!




Thank you!

Questions?



