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𝔼[Y | ̂f(Z) = 0.0001] = 0.1
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f(x |w)
(Yi, Wi), i = 1,…, n

H0 : X |W d= Y |W

(Andrews 1997, Econometrica, Zheng 2000, Econometric Theory)

Calibration test: 

(Widmann et. al. 2019, NeurIPS; Widmann et. al. 2021, ICLR) SKCE method
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Two-sample statistics with , e.g. ECMMD:(Xi, Yi, Wi)n
i=1, Xi ∼ ℙYi|Wi

an
TECMMD

̂σn

H0→ N(0,1)

Intractable distribution  versus “nice” distribution .
∞

∑
m=1

λm(Z2
k − 1) N(0,1)
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j∈𝒩(i)

H((Xi, Yi), (Xj, Yj))

Theorem (informal): 

• Under H0, 𝔼[T] = 0.

• Under mild conditions, T ℙ→ ECMMD2(X, Y |W) if kn = o(n/log(n)) .
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where  is a variance estimate.̂σ2
n

Recall 

T =
1
n

n

∑
i=1

1
kn ∑

j∈𝒩(i)

H((Xi, Yi), (Xj, Yj))

Highly non-trivial proof:

Stein’s method for dependency graph + dedicate analysis on !̂σn
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A consistent test:

ϕ ≡ 1{ | nknT/ ̂σn | ≥ z1−α/2}, lim sup
n→∞

𝔼H0
[ϕ] ≤ α, lim inf

n→∞
𝔼H1

[ϕ] = 1

Computation efficiency: linear comp time in  if  is a constantn kn

Easy calibration: no need to do resampling

Agnostic to hyperparameter: no rate lower bound on kn

This is not the end of the story!
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• Given  and predictive distribution ;(Y1, W1), …, (Yn, Wn) Bern( ̂f(Z))

• Sample ;(Xi, Wi) ∼ Bern(Wi), Wi = ̂f(Zi)

• Compute the test statistic  with  and 
standard deviation estimate .

T (X1, Y1, W1), …, (Xn, Yn, Wn)
̂σn

Sampling  will induce a random test!Xi ∼ ℙXi|Wi
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∑
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T(m)

3. Return the test statistic  with standard deviation estimate ;T̃/ σ̃ σ̃

Theorem (informal): Under , as long as  at any rate we have H0 Mn → ∞

nknT̃/ σ̃n → N(0,1),  if kn = o(nδ) for some small δ > 0.
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iid∼ Dirichlet(ρ), ρ ∈ {0.1,0.2,0.3,0.4,0.5}

n = 100, kn ∈ {15,25}, Mn = 100

Null

Yi ∼ Bern(Wi), Xi ∼ Bern(Wi)

Alternative

Yi ∼ Bern(Wi − W5
i ), Xi ∼ Bern(Wi)

19
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Take-home messages:

• Formulate the model calibration test to a conditional two-sample problem 
and bridge the classical inference literature with calibration problem;

• Nearest neighbor-based test has statistical and computational advantages;

• Derandomization is beneficial for the power of the test;

Open questions:

• Is the proposed test powerful against local alternatives? 

• What if there are multiple candidate models?

• High-stakes application with the proposed method?
21
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Thank you!
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Questions?

Thank you!


